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Introduction

Chemoprevention research aims to finding drugs/natural substances to prevent the occurrence of a particular disease 

and elucidating their mechanism of action. The discovery of novel chemopreventive agents is severely hampered by the 

lack of high throughput assays to screen quickly and reliably promising chemical compounds. 

We present LiSIs ( ), a platform in the context of an ongoing cross-disciplinary project http://lisis.cs.ucy.ac.cy

(GRANATUM; ) aiming to bridge the gap between biomedical researchers by ensuring their http://www.granatum.org

seamless access to the globally available information needed to perform complex experiments and to conduct studies 

on large-scale datasets.

Results	&	Discussion

LiSIs is a modular platform comprised of five major modules: input, pre-processing, processing, post-processing and 

results/outputs. Each module hosts a collection of component categories essentially implementing a variety of 

functionalities. A component category may offer different variations of the same functionality, for example enabling 

data input from either user-defined chemical and biological data files or from the GRANATUM Linked Biomedical Data 

Space. 

In particular, the Predictive Models component enables building novel (Power users - Figure 2) or using existing (Regular 

users - Figure 3) data-driven models to predict biochemical properties of interest to the user for the selection of com-

pounds with acceptable predicted properties. Such models fall into the category of Quantitative Structure – 

Activity/Property Relationship (QSAR/QSPR) models used by the drug discovery community to predict relevant proper-

ties of molecules. 

The model building process is assisted by a custom developed “Hierarchy of Cancer Chemoprevention 

Properties/Activities”. In brief, this light ontology-like effort aims to make available to modeling experts possible (inde-

pendent) ways by which a substance may act as a cancer chemopreventive agent.

During model construction (Figures 2 & 4), a list of training set compounds with their respective property values is pro-

vided as input, along with the settings for the selected predictive modeling application. The output includes the trained 

predictive model and a log file containing measures of the quality of the model estimated by cross-validation or other 

appropriate techniques. In the model usage phase (Figure 3) a list of test compounds is provided as input to a specific 

predictive model. The output consists of a list of compounds with their associated predictions and a log file document-

ing the results.

The Predictive Models component currently makes use of four popular machine learning algorithms widely used by the 

chemoinformatics community for predictive modeling, namely: Decision Trees, Random Forests, Support Vector 

Machines and k-Nearest Neighbours. Implementations of the aforementioned algorithms are available by interfacing 

the CARET package [4] for the open source R Environment for Statistical Computing (R Development Core Team, 2012; 

http://www.r-project.org/). The modular architecture of the system facilitates future extensions, with the possibility of 

adding other appropriate predictive modeling algorithms.

As part of the platform, LiSIs offers a series of built-in predictive models of some biological/chemical properties com-

monly employed as filters in drug discovery. Table 1 displays the key characteristics of these models as well as their per-

formance compared to selected studies. It is worth noting that the models described are the result of a thorough pro-

cess of model generation using a variety of descriptors/fingerprint and learning algorithm combinations and a detailed 

analysis of the performance of the resulting models.

Scientific	Workflows

Scientific workflows (SWs) are used to describe in abstract form the actions that need to be taken in order to complete a 

complex task. A SW is represented as a directed graph, where each node represents a step implemented by a software 

component (e.g. a local program or a remote web service). The graph edges represent either data flow or execution 

dependencies between nodes, coordinating the inputs and outputs of the individual steps, forming the data flow.

SWs provide a simple, yet powerful, environment and facilitate interdisciplinary collaborations by (i) sharing workflows 

and computational components, and (ii) jointly undertaking research initiatives requiring end-to-end scientific data 

management and computational analysis. Advances in grid technologies allow workflows to exploit parallel executions 

enabling large-scale data processing, where workflows are used as a parallel programming model for data-parallel 

applications. Moreover, web services allow ease of access to local and distributed data sources as well as data 

aggregation from highly heterogeneous environments.
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General procedure for the creation of a predictive model:

A. For the creation of a predictive model through the LiSIs platform an expert user (EU) 

must define 3 key components:

 i) Data containing biological properties of the compounds that will be used to train the 

model. These properties are usually obtained through wet-lab experiments and can 

either be a true/false statement (e.g. Toxic/Non-toxic) or a real value (e.g. IC50 values of 

binding affinity to a specific target).

ii) Data describing the chemical properties of the compounds. These descriptors can 

either define simple chemical properties of a compound (e.g. molecular weight, number 

of rings and molecular complexity) or can be derived by the actual structure of the com-

pound in ways that also take into account pharmacophore features (e.g., hydrophobic 

centroids, aromatic rings and hydrogen bond acceptors or donors) or a suitable combina-

tion. The LiSIs platform has the ability to automatically calculate a variety of descriptors 

for a list of chemical compounds. 

iii) The configuration parameters for the model's classifier. Currently, the LiSIs platform 

supports choosing  among different clas-

sification algorithms (e.g., k-Nearest 

Neighbours or Support Vector Machine) 

as well as a series of parameters related 

with model training and cross-validation. 

B. For the creation of a good model every 

part of the process is crucial: 

Biological properties data must be of high 

quality. Chemical descriptors should be 

selected and tuned for each specific 

model through a semi-automated fea-

ture selection process. Selecting the right 

classifier (along with its parameters) is 

also a crucial and laborious process. The 

whole process of feature selection and 
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parameter tuning is guided by the cross-validation results of each intermediate model. The best intermediate model is also independently validated against an 

independent data-set (i.e., data not available to the model during the training phase). The LiSIs platform contains a series of custom tools built to partially auto-

mate, and thus accelerate, the creation and validation of predictive models.

Figure	4

An example workflow of a predictive model cre-

ation: 

The expert user (EU) has to define a series of pa-

rameters such as the input file, the descriptors to 

be calculated and the classifier. In this specific ex-

ample the E U has chosen the k-Nearest 

Neighbours classifier with its default parameters 

(build kNN node). The build kNN tool automates 

the procedure of selecting the best k value based 

on an EU selected metric such as accuracy, sensi-

tivity or specificity. The EU can review the final 

model by examining the output of the tool which 

also contains cross-validation data. At the final 

step of the workflow the model is saved and ex-

ported to GALAXY's public libraries, ready to be 

used by the normal users through the Predict tool.  

Figure	2

Utilizing an existing predictive model:

The initial steps required to use a predictive model 

(compound loading and chemical descriptors gen-

eration) are identical to those used in the model 

building phase. Importantly, the LiSIs platform in-

telligently provides automatically parameter selec-

tions compatible to the predictive model to be used 

in the downstream computation. This feature not 

only ensures the correct execution of the models 

but also makes the prediction process transparent 

to the regular user. The output of the Predict tool is 

a list of predicted biological properties for the input 

molecules which can be post-processed by special 

tools provided within LiSIs. Functionalities such as 

sorting or selecting compounds with specific pre-

dicted properties enable further analyses or report 

generation. 

Figure	3
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Core Galaxy functionalities exploited by the LiSIs platform:

A. Users may access available workflows, i.e. workflows they had 

created or published by other users. These workflows are, strictly 

speaking, the abstract workflows which specify the computational 

steps of an in silico experiment.

B. Users also have access to available histories, which (in the Galaxy 

jargon) refer to workflows accompanied with the actual data of a 

specific run. Histories enable reproducibility of earlier in silico experi-

ments, error checking/debugging or inspection of intermediate com-

putational results.

C. The data libraries panel provides access to data already uploaded 

on the Galaxy/LiSIs platform.  The system is fully customizable (at the 

administrator or power user level) both in terms of content (e.g. sup-

ported file types and their associated content) and access levels. 

D. Users of all levels are enabled to publish workflows giving free 

access to all authenticated users on the system. A specific panel facili-

tates access and search for published workflows meeting specific 

criteria.

The	LiSIs	Platform	Aims

The Life Sciences Informatics System (LiSIs) aims to provide cancer chemoprevention experts with a set of online tools to 

create, update, store and share virtual screening SWs for the discovery of new chemopreventive agents. LiSIs is available 

via a web interface ( ) through a password protected, tiered login process, providing different level http://lisis.cs.ucy.ac.cy

access to platform functionalities based on the user profile. Regular users are able to assemble SWs utilizing available in 

silico models and tools. “Power users” may build new models and tools through the development of custom SWs. 

Workflows execute on the system server and results are stored on the user's GRANATUM workspace, enabling access-

ing, manipulating or sharing SWs, datasets and results with other users.

The LiSIs platform is built on top of Galaxy ([1-3]; ). Galaxy is an open, web-based workflow system  http://galaxy.psu.edu/

that comes preloaded with a big selection of tools designed for data intensive biomedical research. LiSIs utilizes the core 

elements of Galaxy to offer a series of essential capabilities, such as workflow and history sharing as well as shared data 

libraries (Figure 1). At the same time LiSIs takes advantage of the expandable nature of Galaxy to provide easy to use tools 

commonly implemented in drug discovery pipelines, for example chemical compound filters and property generators, 3D 

docking tools and predictive model generation and utilization.

M���� N��� D���������� M����� S�����
S��� / S���

L�SI�

S��� / S���

L���������

C�������������� Predict carcinogenic potency Random Forests Operational, published 0.70 / 0.67 0.66 / 0.62 [5]

D������������ T������� Predict developmental toxicity Random Forests In development, published 0.600 / 0.82 0.95 / 0.59 [6]

M����������� Predict mutagenicity potential Random Forests Operational, published 0.82 / 0.80 0.83 / 0.75 [7]

ERα ������� Predict ERa binding activity potential Random Forests Operational, published 0.72 / 0.91 0.81 / 0.92 [8]

DNMT ������� Predict DNMT binding activity potential Linear SVM In development 0.94 / 0.34 —

S��������� Predict compound solubility Regression equation In development — —

Predictive models built-in the LiSIs platform:

LiSIs currently offers six built-in predictive models while more are constantly de-

veloped. All the models where validated using 10 independent experiments of 

leave 25% out cross-validation. 

Published models are the result of a thorough process of model generation us-

ing a variety of descriptors/fingerprints and learning algorithm combinations 

and a detailed analysis of the performance of the resulting models.

Carcinogenicity

Dataset source: Fjodorova et al. [5].

Number of compounds: 805 (421 carcinogenic, 384 non-carcinogenic.)

Developmental Toxicity

Dataset source: Cassano et al. [6].

Number of compounds: 292 (116 toxicant, 176 non-toxicant)

Mutagenicity

Dataset source: Hansen et al. [7].

Number of compounds: 6444 (3503 mutagenic, 3009 non-mutagenic)

Table	1

ERα binding activity

Dataset source: Roncaglioni et al. [8]

Number of compounds: 802 (286 binders, 516 non-binders)

DNMT binding activity

Dataset source: A collection of compounds gathered by several Chembl arrays 

and publications, compiled by the Cancer Chemoprevention and Epigenomics 

Workgroup, German Cancer Research Center, Heidelberg, Germany.

Number of compounds: 258 (221 binders, 37 non-binders)

Solubility

Implementation of a regression equation described by Delaney [9]

We also compare the results of the LiSIs predictive models to those from the 

respective publications, observing that our results are usually in par or better 

than the current state-of-the-art. Apparently our results illustrate that in most 

of the cases Random Forests models perform better that the rest of the tested 

algorithms.
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