
Galaxy - a Gateway to Tools in e-Science

Enis Afgan1, Jeremy Goecks1, Dannon Baker1, Nate Coraor3, The Galaxy

Team2, Anton Nekrutenko3, and James Taylor1

1Department of Biology and Department of Mathematics & Computer Science,

Emory University
2http://galaxyproject.org
3Huck Institutes of the Life Sciences and Department of Biochemistry and Mo-

lecular Biology, The Pennsylvania State University

Abstract

eScience focuses on the use of computational tools and resources to analyze large

scientific datasets. Performing these analyses often requires running a variety of

computational tools specific to a given scientific domain. This places a significant

burden on individual researchers for whom simply running these tools may be

prohibitively difficult, let alone combining tools into a complete analysis, or ac-

quiring data and appropriate computational resources. This limits the productivity

of individual researchers and represents a significant barrier to potential scientific

discovery. In order to alleviate researchers from such unnecessary complexities

and promote more robust science, we have developed a tool integration framework

called Galaxy; Galaxy abstracts individual tools behind a consistent and easy to

use web interface to enable advanced data analysis that requires no informatics

expertise. Furthermore, Galaxy facilitates easy addition of developed tools, thus

supporting tool developers, as well as transparent and reproducible communica-

tion of computationally intensive analyses. Recently, we have enabled trivial de-

ployment of complete a Galaxy solution on aggregated infrastructures, including

cloud computing providers.

Keywords: Galaxy, bioinformatics, tool execution framework, cloud computing

1 Introduction

Rapid growth in both the production and the availability of scientific data has

revealed the inadequacy of existing data analysis approaches, technologies, and

tools. This is particularly true in experimental biology, where the volume of data

produced by new technologies confounds the average experimentalist [1]. New

tools and techniques are continually being developed to analyze this data. For the

domain scientist, use of these newly available tools and technologies is often pre-

ceded by a steep or prolonged learning curve: discovering the most applicable

2

tools, deploying them on appropriate computational resources, learning new user

interfaces, etc. Also, arriving at the desired results often requires the domain sci-

entist to become familiar with several tools and compose those into an appropriate

workflow. Because of the differences in tools and tool interfaces, this task can eas-

ily result in additional complexities that need to be addressed by the scientist di-

rectly (e.g., developing wrappers to format tool input/output). Thus, in addition to

the development of data analysis tools, there is a need for supporting tools and

frameworks that make it possible to utilize otherwise available or upcoming cy-

ber-infrastructure to process the data and deliver results directly to users [2], [3].

Users of such systems are often domain scientists focused on specific research

problems that posses domain-specific knowledge but lack interest and knowledge

to write computer programs. To support the scientific process, it must be possible

for these scientists to share newly available scientific data and results with the re-

mainder of the community. Critical to the scientific review process, these results

should be easily verified and reproduced by others. When it comes to sharing re-

sults, thus far, scientists have primarily used the scholarly publishing process to

announce their findings. However, the traditional publication process is not well

suited for publishing the details of data intensive computational analysis in a com-

pletely reproducible manner. In the e-Science context, and with the rapid advances

in data discovery, scientists seek to publish their results quickly and continuously

in a medium that allows analysis to be expressed more naturally, leading to a shift

toward web-based, lightweight publication methods such as wikis and blogs.

Because of these changes in the scientific process, there is a significant need to

provide research scientists with streamlined access to a variety of domain specific

tools that can be easily integrated and shared with others in the community. These

are the aims of e-Science; they focus around delivery and sharing of highly fo-

cused solutions directly to domain scientists. Ideally, this enables a scientist to fo-

cus on her immediate work without requiring them to learn and understand how

the underlying technology operates.

Here we describe an open-source software system, called Galaxy1 [4], [5], that

addresses many of the deficiencies associated with advancement of e-Science out-

lined above and facilitates scientists’ focus on their domain. Galaxy provides an

integrated analysis environment where domain scientists can interactively con-

struct multi-step analyses, with outputs from one step feeding seamlessly to the

next. The user interfaces are intuitive and consistent, requiring minimal user train-

ing and effort. Any software tool can easily be made available through Galaxy,

and the underlying data management and computational details are completely

hidden from the user, even when dealing with large-scale datasets and high-

performance computing resources. The environment transparently tracks every

analysis detail to ensure reproducibility, and provides a workflow system for con-

structing reusable analysis, as well as an intuitive interface for constructing

workflows from existing analysis. The Galaxy data library system provides secure

1 http://galaxyproject.org

3

data management and sharing, with fine-grained access controls and extensive

metadata tracking. Thus, Galaxy provides an ideal solution for immediately deliv-

ering, integrating, and sharing e-Science tools directly to domain scientists, ena-

bling scientists to focus on performing computational analyses rather than setting

up and configuring computational tools.

The fundamental concept underlying Galaxy is a framework for tool integra-

tion. It focuses on accessibility, expandability, and result reproducibility. With

that, it trades off some expressiveness in terms of user features for usability. Users

may not possess the flexibility of complete programming language but they gain

the ability to easily, rapidly, and consistently access a variety of domain specific

tools. Galaxy achieves this by conceptualizing domain specific tools as an abstrac-

tion for doing data analysis. For domain scientists from historically non-

computational fields (e.g., biology, psychology, sociology), this approach makes it

possible to perform complex and reproducible analysis without programming or

software engineering expertise.

With the continuous growth of the analysis data and thus increased computa-

tional requirements, alongside the usability features realized by Galaxy, there is a

need to transparently provision necessary computational infrastructure. Galaxy

supports this computational infrastructure demand at two levels: (1) by handling

integration with an available workstation or a cluster and (2) by providing a ready

solution to deploy Galaxy on aggregated computational infrastructures. This ap-

proach makes Galaxy extremely flexible and enables it to meet the needs of a

spectrum of users, including tool developers, individual researchers, or entire labs.

This chapter describes the Galaxy framework in the context of a bioinformatics

tool set and then generalizes the framework toward a tool execution and data anal-

ysis framework for any computational domain. Architecture, interface, and use

cases are described, highlighting Galaxy’s main features. Lastly, current and

future directions for Galaxy are described, focusing on job execution across dis-

tributed computing infrastructures. Leveraging distributed computing enables Gal-

axy to process increasingly large volumes of data using ever-larger resource pools.

2 Galaxy - a Tool Integration Framework

Galaxy is a software framework for making computational tools available to users

without informatics expertise. It is available as a self-contained, portable, open-

source software package, which can easily be deployed on existing computational

resources. It provides a web-based interface for interactively performing analysis

using computational tools. Galaxy provides abstractions to make it easy to inte-

grate almost any computational tool: any program that can be run from the com-

mand line can be integrated by providing an abstract description of how the pro-

gram works (its parameters and the type of data it expects and generates). This

serves both researchers, for whom a simple and intuitive user interface is auto-

4

matically generated, and tool developers, who can now rapidly deploy their tools

in a way that their experimental colleagues can actually use. Galaxy can also inte-

grate other sorts of tools (e.g., external database interfaces or other web services).

Using the concept of tools as discrete units of analysis with well-defined pa-

rameterizations – the Galaxy framework provides a powerful web-based environ-

ment for performing complex analyses (Figure 1). Analysis can be performed in-

teractively, with Galaxy keeping a complete “history” that tracks every step of the

analysis. Thus, unlike other approaches [6] that rely on careful engineering prac-

tices to ensure transparency and reproducibility, in Galaxy the analysis framework

automatically ensures that every detail of every step of an analysis is recorded and

can be inspected later. Galaxy also includes a workflow system for constructing

more complex analyses that execute multiple tools, using the output of one tool as

the input of another tool. Workflows can be automatically extracted from histo-

ries, providing a way to rerun and verify the reproducibility of any existing analy-

sis. Histories and workflows can be shared in a variety of ways, including as part

of a publication.

Figure 1. An overview of analysis in Galaxy: (A) Tool developers describe their

software using Galaxy tool configurations. (B) Galaxy generates a user interface

for the tool. (C) Users provide parameters for the tool, Galaxy manages tool exe-

cution and stores all parameters and results in the history. (D) The workflow sys-

tem allows multi-step analysis to be reproduced, modified, or created from

scratch.

5

2.1 Galaxy Goals

The aim of the Galaxy project is simultaneous impact on individual researchers

that want to simply use computational tools and on tool developers that want to

publicize their tools while minimizing tedious overhead work associated with the

necessary tasks (e.g., data source integration, UI development). Thus, the design

of Galaxy relies on the following principles:

 Accessibility: The most important feature of Galaxy is the ability for users to

access and use a variety of domain specific tools without a need to learn imple-

mentation or invocation details of any one tool nor worry about underlying infra-

structural details. Galaxy enables users to perform integrative analyses by provid-

ing a unified, web-based interface for obtaining genomic data and applying

computational tools to analyze the data. Accessibility is further supported by ena-

bling users to import datasets into their workspaces from many established data

warehouses or upload their own datasets. Lastly, full functionality of Galaxy is

immediately accessible from a public web server2, available for download and

simple local installation (see Section 3.1), or readily deployable on aggregated in-

frastructures thus sustaining any level of desired hardware support (see Section

3.4).

 Simplicity of extension: A key feature of the Galaxy framework is the ease

with which external tools can be integrated. Galaxy is completely agnostic to how

tools are implemented – as long as there is a way to invoke a tool from a com-

mand line, a tool could be written in any language whether interpreted (e.g. Perl,

Python, R) or compiled (e.g. C, Fortran). Galaxy requires only a high level de-

scription of what parameters a user can provide for the tool, and how to construct

a command line or configuration file based on those parameters. Note that when a

user writes a tool configuration for Galaxy, they are not implementing a user inter-

face; they are describing the abstract interface to that tool, which Galaxy can then

use to adapt that tool to a specific user interface. As a result of such flexibility,

functionality of Galaxy is not limited but can be expanded and adopted not only to

a specific researcher or a lab but even to a specific domain.

 Reproducibility of results: A key to good science is openness and thus the

ability for others to repeat and validate derived results. Galaxy supports repro-

ducibility by tracking derivation of users’ analyses, by supporting the ability to re-

peat a given analysis (or part of thereof), as well as by effectively enabling tag-

ging, annotation, and sharing of complete analyses. Such functionality enables a

given analysis not only to be repeated but to also be given context and necessary

description explaining underlying reasoning for a particular analysis step and to be

easily shared with others.

2 http://usegalaxy.org/

6

2.2 Galaxy components

As discussed in the previous section, Galaxy represents an integrated system

that focuses on analysis accessibility, tool integration, and support for reproduci-

bility of obtained results. To ensure flexibility and extensibility, Galaxy’s architec-

ture is highly modular, and is built for a set of distinct low-level components.

These individual components operate at different levels and are not necessarily

simultaneously utilized. Instead, when combined, they provide the integrated solu-

tion Galaxy has become known for. Figure 2 depicts these components.

2.2.1 Data Analysis

The primary interface to a Galaxy instance is through the web (although the Gal-

axy framework allows other interfaces to be implemented; see Section 2.3). The

Galaxy analysis workspace contains four areas: the upper bar, tool frame (left col-

umn), detail frame (middle column), and history frame (right column). The upper

bar contains user account controls as well as help and contact links. The left

frame lists the analysis tools and data sources available to the user. The middle

frame displays interfaces for tools selected by the user. The right frame (the his-

tory frame) shows data and the results of analyses performed by the user. Pictured

here are five history items representing one dataset and following analysis steps.

Every action by the user generates a new history item, which can then be used in

subsequent analyses, downloaded, or visualized. The Galaxy history page can dis-

play results from multiple genome builds, and a single user can have multiple his-

tories. Figure 3 provides an overview of the analysis workspace.

Figure 2. Symbolical representation of components that together enable Galaxy

aims.

7

The Galaxy history system stores all data uploaded by the user or generated by

the analysis tools. Figure 4 illustrates how the history works. Each analysis step

(Bowtie mapping [7] and format conversion in this case) generates a new history

item, leaving the original datasets intact. Thus if the user makes a mistake or

wants to experiment with different parameter settings, he/she can always go back

to the original data.

The ability to perform an analysis in a step-by-step fashion and then be able to

simply repeat any part of it (using the same data and parameters or changing

those) represents a significant step forward in terms of enabling analysis and real-

Figure 4. Galaxy history stores uploaded data and analysis results. Original data-
set is always preserved and every subsequent analysis adds a new entry into the
history pane.

Figure 3. A screenshot of current Galaxy web interface.

8

izing reproducibility. However, due to the nature of the research problem, it is of-

ten the case that the same analysis needs to be repeated using different data but the

same procedure (possibly using slightly different parameters). In order to enable

effective realization of easy reuse, Galaxy supports the notion of workflows. The

main feature of Galaxy that makes this possible is the structured abstract descrip-

tions of tool interfaces. A Galaxy workflow consists of a specification of a series

of tool invocations, where the input of a tool can be connected to the output of any

previous tools. Input datasets and parameters are either specified in the workflow,

or left undefined, in which case they become the inputs for invoking the

workflow.

To make workflow construction as intuitive as possible for non-programmers,

Galaxy allows workflows to be constructed from existing analyses. At any time

after performing some analysis, a user will be able to extract a previous chain of

analysis steps as a workflow (Figure 5A). Once extracted, the workflow can then

be modified and run with different parameters or different starting datasets.

In addition to creation of workflows by example from existing histories they

can also be created from scratch using the Galaxy workflow editor with an interac-

tive graphical interface. A graphical editor is provided in which any tool can be

added to the “canvas” (Figure 5B). A series of tools is then connected by links

representing the flow of data. The workflow editor is aware of which tools can be

chained together: if the output of tool A is compatible with the input of tool B,

these two can be chained together.

Figure 5. Two ways to create workflows in Galaxy: (A) Shows the interface for
constructing a workflow from an existing history, (B) Shows the workflow editor
for explicit workflow construction and editing.

9

2.2.2 Data Sharing

At the core of accessibility and reproducibility is the ability to share one’s find-

ings in a way that is both useful and usable to others. Within Galaxy, sharing is

supported from the ground up and is tightly integrated into user’s experiences, fa-

cilitating the transition from solitary analysis to collaboration. Users can share

their findings at multiple levels and with varying scopes: a user can share individ-

ual datasets, parts of an analysis, an entire analysis, as well as analysis conclu-

sions. This wide range of sharing options is supported through the following set of

components: history sharing, tagging, annotations, data libraries, and Galaxy

Pages.

An individual can share his history with specific Galaxy users, make it avail-

able via a persistent web link (thus not requiring a Galaxy account), or publish it,

enabling all users to access it via a web link and find it via search. A user viewing

a history shared with them can simply inspect the history or choose to import it

into her local workspace and manipulate it as desired. Internal to Galaxy, history

sharing is enabled by associating a URL with each history element followed by

implementation of a broad set of access policies.

Galaxy also supports tagging (or labeling)—applying words or phrases to de-

scribe an item. Tagging has proven very useful for categorizing and searching in

many web applications. Galaxy uses tags to help users find items easily via search

and to show users all items that have a particular tag. Tags support reproducibility

because they help users find and reuse datasets, histories, and analysis steps; reuse

is an activity that is often necessary for reproducibility. Along the ideas of sharing,

Galaxy implements notion of community tags; a user can choose to tag a dataset

with a set of tags that will be visible and searchable by anyone using Galaxy or

simply use personal tags that are accessible only to the given user.

Along with tagging, Galaxy supports user annotations—descriptions or notes

about an analysis step. Annotations are a critical component of reproducibility be-

cause they enable users to explain why a particular step is needed or important.

Automatically tracked metadata (i.e., history elements) records what was done,

and annotations indicate why it was done, facilitating reproducibility by recording

both the details and the context of an analysis. Galaxy users can annotate a com-

plete history or workflow and can annotate individual history or workflow steps.

Annotations are visible when a user shares a dataset, workflow, or history, as well

as within Galaxy Pages (see last paragraph in this section).

With the exponential increase in size and number of bioinformatics data [1], it

is increasingly challenging to manage, organize, and make available datasets. As a

step in alleviating this, Galaxy supports notion of data libraries. Data libraries

represent Galaxy instance wide repository of input data sets that can be easily

shared and incorporated into users’ histories. Not only does the data available in

data libraries not need to be uploaded by each user, but any data library element

can be used any number of times by any number of users without duplicating the

single disk file. Data libraries provide a hierarchical container for datasets, mean-

10

ing that they can contain datasets, folders, and sub-folders. In addition, data

versioning and sophisticated data access permission role system are implemented

allowing role-based sharing of individual data library elements as well as making

a data library public. Alongside data library sharing permissions, individual data

library elements can enforce different actions based on selected user groups.

Galaxy Pages (Figure 6) unify Galaxy’s functionality to provide users with a

medium to communicate and share a complete computational analysis. Pages are

custom web-based documents that enable users to communicate about an entire

computational experiment, and Pages represent a step towards the next generation

of online publication or publication supplement. A Page, like a publication or sup-

plement, includes a mix of text, figures, and graphs describing the experiment’s

analyses. In addition to standard content, a Page also includes embedded Galaxy

items from the experiment: datasets, histories, and workflows. These embedded

items provide an added layer of interactivity, providing additional details and links

to use the items as well. Like histories, Pages can be shared at a range of levels.

Importantly, pages can be published and serve as online supplementary materials

for a journal paper; a recent paper describing a metagenomic study that surveyed

eukaryotic diversity in organic matter collected off the windshield of a motor ve-

hicle used a Page for its supplementary material3 [8].

3 http://usegalaxy.org/u/aun1/p/windshield-splatter

Figure 6. A screenshot of a published Galaxy Page showing supplemental infor-
mation for performed analysis and associated scholarly publication. Any part of
information included on this Page can be easily copied into user’s workspace thus
supporting notions of accessibility and reproducibility. Shown page is available at
http://main.g2.bx.psu.edu/u/aun1/p/windshield-splatter

11

2.2.3 Data Acquisition and Visualization

Modern biological analyses frequently involve both locally produced experi-

mental data and community data available through a number of well-organized

data warehouses including NCBI, UCSC, Ensembl, TIGR, GMOD and others.

These excellent resources provide users with the ability to query databases (e.g.

with the UCSC Table Browser or the Mart system) and visualize features of the

genomic landscape (e.g. with the UCSC Genome Browser, GBrowse, or Ensembl

browser). In other words, these resources represent two termini of a typical analy-

sis: the beginning (obtain the data) and the end (visualize the results). Galaxy

complements these resources, enabling data manipulation and aggregation of local

data together with data acquired from these external sources. Results of analysis

can then be sent back to these resources for visualization.

The Galaxy distribution includes tool configurations for integrating several im-

portant data sources, including UCSC Table Browser, BioMart, InterMine,

GBrowse, directly into the data analysis interface native to Galaxy. Galaxy makes

implementing connections to external data-sources simple and straightforward.

From Galaxy, any existing web based resource can be integrated into Galaxy’s

web interface through its "proxy" functionality, requiring no changes to the exist-

ing resource. Because of that, any Galaxy instance can immediately use these data

connections with no custom configuration.

Upon completion of an analysis, Galaxy users can easily visualize analysis re-

sults. Galaxy implements connections to external data visualization tools, includ-

ing the UCSC Genome Browser (see Figure 7), which can be accessed via web

links within a dataset’s history entry.

Figure 7. Visualization example with Galaxy and UCSC Genome Browser.

12

2.2.4 Access to Computational Resources

The Galaxy components discussed thus far focus on enabling and streamlining

the process of analyzing data. However, increasing capabilities to produce large

bioinformatics datasets also means an increasing need for computational re-

sources. Thus, there is an obvious benefit—and, soon, a need—to enable the

transparent acquisition of computing resources (e.g. computing power, storage

space) to meet these demands. Galaxy makes it possible for users to acquire and

utilize computational resources in two distinct ways. First, by providing an ab-

stract interface to various compute clusters, allowing the use of existing resources

users may have available. Second, by providing a self-contained solution for ena-

bling Galaxy to be executed on distributed but aggregated infrastructures, for ex-

ample, cloud computing [9] resources.

In the context of generating ever-growing data and the necessary transforma-

tion of this data into a biologically meaningful information, it is necessary to pos-

sess significant computational infrastructure and informatics support. In particular,

meeting computational demands is especially difficult for individual researchers

and small labs. For an experimental group with no computational expertise, sim-

ply running a data analysis program is a barrier, let alone building a compute and

data storage infrastructure capable of dealing with DNA sequencing data. Galaxy

as a whole represents the first step in hiding low level details, such as running and

assembling various tools, from users. Galaxy abstracts and automatically handles

all aspects of interaction between users, tools, and the system. Through a job ab-

straction approach, Galaxy describes and encapsulates a job in an internal repre-

sentation. This representation enables Galaxy to easily move across various sys-

tems as well as to support reproducibility. Once a job is described and is ready to

be executed, depending on the configuration of Galaxy, an appropriate job runner

is invoked and the job is submitted to the underlying resource(s). The job runner

polls the system for job status and handles the produced output to integrate it back

into Galaxy for the user. Availability and actions performed by job runners are

further described in Sections 3.2 and 3.3.

In addition to enabling streamlined execution of analysis jobs on local re-

sources, provisions have been made to enable Galaxy to simply execute on virtual-

ized compute infrastructures, including cloud computing resources. Cloud com-

puting [10] has recently emerged and is ideally suited to the analysis of large-scale

biological data. In this model, computation and storage exist as virtual resources,

which can be dynamically allocated and released as needed. This model is well

suited for many problems in bioinformatics data analysis, which intermittently re-

quire large amounts of compute power with fast access to enormous amounts of

data. By coupling Galaxy and such environments, it is possible for anyone to ac-

quire needed resources and perform desired analysis while not requiring informat-

ics expertise. Section 4 discusses this functionality of Galaxy in great detail.

13

2.3 Galaxy Architecture

The Galaxy Framework is a set of reusable software components that can be in-

tegrated into applications, encapsulating functionality for describing generic inter-

faces to computational tools, building concrete interfaces for users to interact with

tools, invoking those tools in various execution environments, dealing with gen-

eral and tool specific dataset formats and conversions, and working with “meta-

data” describing datasets, tools, and their relationships. The Galaxy Application is

an application built using this framework that provides access to tools through an

interface (e.g., a web-based interface). A Galaxy Instance is a deployment of this

application with a specific set of tools. The core components of the Galaxy

Framework are the toolbox, the job manager, the model, and the web interface,

depicted in Figure 8.

Figure 8. High-level architecture of core Galaxy framework components. (A)

Command line tools are described within the tool configuration files and (B) vali-

dated within the Toolbox. Available tools are made available through the web in-

terface (C). As users submit jobs (D), web controllers interact with the Model (E)

to store the relevant information in Galaxy’s database (F). As jobs become ready,

the Job manager polls the database (G), prepares the jobs, and submits them to the

underlying resources (H). As jobs complete, the Job manager handles and imports

them back into the Galaxy framework.

14

The toolbox manages all of the details of working with command-line and

web-based computational tools. It parses Galaxy tool configuration files (for an

example of such a file see Section 3.2) that describe the interface to a tool – the

parameters and input data it can take, their types and restrictions, and the outputs it

produces – in an abstract way that is not specific to any particular user inter-

face. This abstraction is critically important since it allows for changing how tools

are displayed without needing to change their configuration (e.g., to leverage new

accessibility features as web browsers improve, or to provide interfaces that are

not web-based). The toolbox provides support for validating inputs to a tool, and

for transforming a valid set of inputs into the commands necessary to invoke that

tool. Additionally, the toolbox allows tool authors to provide tests for their tools

(inputs and corresponding outputs) and provides support for running those tests in

the context of a particular Galaxy instance.

The job manager deals with the details of executing tools. It manages depend-

encies between jobs (invocations of tools) to ensure that required datasets have

been produced without errors before a job is run. It provides support for job queu-

ing, to allow multiple users to each submit multiple jobs to a Galaxy instance and

receive a fair execution order. The underlying method for execution is “plugga-

ble”. Currently jobs can be executed on the same machine where the Galaxy in-

stance is running, or dispatched to a computational cluster using a standard queue

manager (support for The Portable Batch System and Sun Grid Engine systems is

included, and other dispatch strategies can be implemented and plugged in easily).

The model provides an abstract interface for working with datasets. It provides

an object-oriented interface for working with dataset content (stored as files on

disk) and “metadata” (data about datasets, tools, and their relationships; stored in a

relational database). Beyond providing access to the data, this component deals

with support for different datatypes, datatype specific metadata, and type conver-

sions.

The web interface provides support for interacting with a Galaxy instance

through a web browser. It generates web-based interfaces to the toolbox (for

browsing and choosing tools), individual tools (building forms to accept and vali-

date user input to a tool), and the model (allowing the user to work with all of the

datasets they have produced). The web interface is currently the primary way to

interact with a Galaxy instance, but the other underlying components do not need

to know anything about the web, all web specific aspects of Galaxy are encapsu-

lated by the web interface. The web interface is the primary interface type for Ga-

laxy and this was dictated by the fact that web-browsers are present on every

modern computer.

2.3.1 Implementation Details

The Galaxy framework is implemented in the Python programming language.

Python has several advantages for our purposes. First, it is a lightweight dynamic

15

language that allows us to rapidly implement new Galaxy features. While Python

is concise and easy to write, it is also a highly structured language that is generally

easy to read and understand. This is important since it makes customizing and ex-

tending the Galaxy framework much easier for users. Additionally, Python has a

very powerful standard library, as well as an amazing variety of third party open

source components; some of the best of which we have been able to take advan-

tage of in building Galaxy. However, an important aspect of the Galaxy architec-

ture is the abstraction between the framework and the underlying tools. Because

the Galaxy toolbox interacts with tools through command-line and web-based in-

terfaces, there is no requirement that a tool author use Python (e.g., the example in

Section 3.2 uses a tool written in Perl). While Python is a powerful language for

scientific computing, and many of the tools we provide for comparative genomic

analysis are implemented in Python, frequently another language may suit a par-

ticular problem better, or simply be preferred by a tool author. We want Galaxy to

be able to provide easy access to all useful computational tools – as long as a tool

can be run through a command line or the web, Galaxy can incorporate it.

Galaxy includes its own web server and embedded relational database

(SQLite), and a Galaxy download includes all dependencies: a user needs to just

edit the configuration file and run one command to start interacting with and cus-

tomizing their own Galaxy instance (see Section 3.1). However, if a particular

Galaxy instance needs to support higher throughput, they can customize the web

server, the underlying relational database, and the job execution mechanism. For

example, the public Galaxy instance maintained by the Galaxy team at Penn State

is integrated with Apache as the web-server, uses the enterprise class relational

database PostgreSQL, and executes jobs on a computational cluster with a queue

managed by Torque PBS.

2.3.2 Software Engineering Details

Galaxy development follows a two-week cycle, in which tasks are identified,

integrated, and tested every two weeks. Between cycles the team meets to discuss

errors that occurred during the past cycle, review changes that were made, and es-

tablish tasks for the next development cycle. By identifying projects that can be

completed quickly, these short cycles allow students who are involved in the pro-

ject for only a short time to still make a satisfying and useful contribution.

Regular code reviews are also a critical part of our process, whenever changes

are checked into the Galaxy version control system, they are emailed to all mem-

bers of the team for review. Thus we ensure that all code checked into Galaxy is

seen by more than one person. Galaxy includes unit tests both for the framework,

and for individual tools. These tests are run automatically whenever changes are

made, and test failures are emailed to the team so that any regressions are identi-

fied immediately. In addition to email, developers communicate through a soft-

ware development oriented wiki, that allows for writing documentation and fea-

16

ture specifications in a collaborative way, as well as tracking bugs, feature en-

hancements, and other issues.

3 Deploying and Customizing Galaxy

This section provides an overview of the steps required to deploy and custom-

ize an instance of Galaxy and establishes a need for tools such as Galaxy to transi-

tion toward a ubiquitous computing platform that is not dependent on any given

infrastructure and/or tool set.

3.1 The Installation Process

The Galaxy framework can be freely downloaded by anyone from anywhere

and used locally to perform data analyses or to support development of local tools.

To make Galaxy attractive for developers, its installation process very straight-

forward. Because Galaxy includes and manages all of its own dependencies, the

only requirements for a Galaxy download is a local Python 2.4 or later interpreter

and Mercurial4 (an open-source version control system):

1. Get the latest copy of Galaxy from the source repository. We make

the code available in several forms to ensure anyone can obtain it, but the

easiest way to ensure you have a current copy of the Galaxy code is by

using mercurial from the public repository available on bitbucket5:

hg clone http://bitbucket.org/galaxy/galaxy-dist/

2. Run the automatic initial setup. When first installed, Galaxy needs to

download dependencies for the platform it is installed on, create the ini-

tial configuration files, and initialize its database. This is all completely

automated and requires no work from the user beyond running the initial

setup script:

sh setup.sh

3. Run Galaxy. At this point Galaxy is configured and ready to run, which

is as simple as:

sh run.sh

These three simple steps are all that is needed to have a running Galaxy in-

stance, which can be immediately used to perform analyses using the default set of

tools. This default configuration uses its own embedded web server and database,

and executes analysis on the machine where it is installed. However, Galaxy can

be easily configured to interface with an enterprise class database, high availabil-

4 http://mercurial.selenic.com/
5 http://bitbucket.org/

17

ity web server, or various computational clusters depending on the needs of a par-

ticular site (see Section 3.3). Additionally, users can customize many other aspects

of a Galaxy instance, such as the appearance of the web interface, the datatypes

the framework will recognize and understand, and the available computational

tools. Ensuring a simple installation process allows anyone to utilize Galaxy with-

out possible contention of public resources. In addition, developers can easily es-

tablish their personal environment for developing or customizing new tools.

3.2 Adding Tools to Galaxy

In addition to simple installation procedure, another key requirement for win-

ning developers is to make tool integration effortless. For example, consider inte-

grating a simple PERL script which is run from the command line as “toolExam-

ple.pl FILE” which reads FASTA format sequence data from the file name

FILE and prints the GC content - a statistical measure of the content for a DNA

sequence - of all of the sequences. To integrate this tool into Galaxy, we create a

“tool config” file like that show in Figure 9. This configuration file provides an

abstract interface to the tool that can then be integrated into any Galaxy instance.

To make a particular Galaxy instance aware of the tool, it simply needs to be

added to “tool_conf.xml” configuration file in Galaxy’s installation directory.

Note that a tool can be written in any language or be a compiled executable – the

Galaxy framework only needs to know how to run it and to pass it the necessary

parameters.

For tools that require more complex interfaces Galaxy provides additional con-

structs for describing tool input parameters. Galaxy allows groups of parameters to

be repeated, and will automatically deal with the interface complexity of allowing

the user to add and remove repetitions of the group (Figure 9D). For example, in a

plotting tool this could be used to allow the user to define an arbitrary number of

plot series, each built from a different dataset with different parameters. It is also

possible to define conditional groups of parameters, allowing the specific inputs

that are available in a given section to depend on previous inputs (Figure 9C). For

example – again considering a plotting tool – it is possible to have different input

parameters within a series, depending on whether the user has selected a line se-

ries or a point series. These grouping constructs can be nested to arbitrary depth,

allowing input scenarios of substantial complexity to be specified simply and con-

cisely.

18

3.3 Customizing Galaxy

In production environments where many users are intended to use Galaxy, the

Galaxy instance should be customized to rely on high availability tools capable of

handling user-generated load as well as to relegate job execution to a compute

cluster, thus speeding up execution of jobs. The Galaxy framework supports such

customizations via multiple abstraction levels implemented in the application.

Specifically, all of database (i.e., model) interaction is handled through the

Figure 9. (A) Tool configuration file for the example tool described in Section
3.2 and (B) the user interface to the tool as generated by Galaxy. Note the corre-
spondence between elements of toolExample.xml file and the user interface
elements in the generated form. (C) An example of interface for lastZ short read
wrapper. This interface uses a conditional construct allowing the user to switch
between “Commonly used” parameters (shown) and “Full list” representing a
multitude of options for this tool. (D). An example of interface utilizing group
repetitions. Here a user can build multiple custom tracks.

19

SQLAlchemy6 toolkit that mediates interactions between Galaxy and the underly-

ing database server. In turn, Galaxy is implemented on top of an abstraction layer

that does not change with the underlying database implementation. As a result,

SQLite, PostgreSQL, and MySQL are immediately supported as underlying data-

base servers. Customizing a given instance of Galaxy instance to use an alterna-

tive database server is done simply by changing a global configuration parameter.

In addition, the implementation of Galaxy provides database migration scripts that

ensure smooth transition from one Galaxy update to the next without compromis-

ing data stored in the database.

By default, Galaxy executes user submitted jobs on the local system. Due to the

computational demand such jobs impose on a given system, as the number of jobs

grows, it is beneficial to farm those jobs out to a compute cluster and execute them

in parallel. Comparable to the support for multiple database servers, Galaxy pro-

vides immediate support to execute jobs on the TORQUE PBS cluster manager

and the Sun Grid Engine (SGE) cluster manager. Within Galaxy, support for mul-

tiple job managers is implemented at a conceptual level making it easy to add sup-

port for additional job management systems.

Figure 10 shows the architecture of the job manager component within Galaxy.

The Galaxy web controller receives a job and all data about the job is stored in the

database (e.g., input data, user-selected parameters) (steps 1 and 2). The job moni-

tor detects the change and proceeds to create a job wrapper - a Galaxy-specific

representation of the job that contains all necessary components forming a job

(e.g., input dataset, reference to external index files, full path for invoking a tool,

complete set of job parameters) (step 3) and adds it to the end of a local queue

(step 5). Relevant job data is also stored in the local database to enable job recov-

ery in case a job or a machine was to fail. Next, depending on the configuration of

Galaxy, the job is picked up from the job queue by a job runner (step 6). A job

runner is a modular and pluggable component that implements necessary details

for running a job on the underlying system. In case of the basic local job runner,

this simply entails composing the complete tool invocation command and spawn-

ing a new thread (steps 7 and 8). In case of a cluster manager such as SGE, it en-

tails creating a job wrapper script and submitting the job to an appropriate queue

as well as monitoring the job.

6 http://www.sqlalchemy.org/

20

3.4 Galaxy Accessibility

Anecdotal evidence suggests that Galaxy is usable for many biologists. Gal-

axy’s public web server processes ~5000 jobs per day. In addition to the public in-

stance, there are a number of high-profile Galaxy servers in use, including ones at

the Cold Spring Harbor Laboratory and the United States Department of Energy

Joint Genome Institute. All of Galaxy’s operations can be performed using noth-

ing more than a web browser, and Galaxy’s user interface follows standard web

usability guidelines [11], such as consistency, visual feedback, and access to help

and documentation. Hence, biologists familiar with genomic analysis tools and

comfortable using a web browser should be able to learn to use Galaxy without

difficulty.

Finally, Galaxy has been used in numerous life sciences publications by

groups not affiliated with the Galaxy team, and its sharing features were recently

used to make data available from a genome-environment interaction study pub-

lished in Science [12].7

7 http://main.g2.bx.psu.edu/u/fischerlab/h/sm1186088

Figure 10. Architecture of the job management component within Galaxy.

21

3.5 Galaxy Usage Example

To demonstrate the utility of Galaxy, here we show how it was used to per-

form and communicate a previously pbulished metagenomic study that surveyed

eukaryotic diversity in organic matter collected off the windshield of a motor

vehicle [13]. The choice of a metagenomic experiment for highlighting the utility

of Galaxy and Pages was not accidental. Among all applications of Next Genera-

tion Sequencing (NGS) technologies, metegenomic applications are arguably the

least reproducible. This is primarily due to the lack of an integrated solution for

performing metagenomic studies, forcing researchers to use various software

packages patched together with a variety of “in-house” scripts. Because phylogen-

etic profiling is extremely parameter dependent—small changes in parameter set-

tings lead to large discrepancies in phylogenetic profiles of metagenomic sam-

ples—knowing exact analysis settings are critical. With this in mind, we designed

a complete metagenomic pipeline that accepts NGS reads as the input and gener-

ates phylogenetic profiles as the output.

The Galaxy Page for this study describes the analyses performed and includes

the study’s datasets, histories, and workflow so that the study can be rerun in its

entirety: http://usegalaxy.org/u/aun1/p/windshield-splatter To reproduce the ana-

lyses performed in the study, readers can copy the study’s histories into their own

workspace and rerun them. Readers can also copy the study’s workflow into their

workspace and apply it to other datasets without modification. Moreover, histories

and workflows can be exported to other Galaxy instances, thus supporting addi-

tional means for result reproducibility.

Other recent examples of the use of Galaxy for analysis of genomic data in-

clude [14], [15] and [16].

4 Enabling the Next Step in e-Science

Overall, Galaxy provides an easy-to-deploy platform for data analysis, tool

deployment, and analysis sharing and publication. An individual instance of Gal-

axy can easily be customized by adjusting its runtime environment (i.e., cluster

support) to enable it to scale and meet the demand imposed by its users. However,

this model of expansion does not fare well in several scenarios. For example, data

analysis is often an intermittent activity: a research lab will often have periods

when large amounts of data need to be analyzed followed by little or no data

analysis needs. Alternatively, an individual researcher or a small lab may not have

access to a large compute cluster needed to perform desired analysis; for such a

scenario, it is often not worth purchasing and maintaining a compute system due

to the associated cost, time and knowledge required to maintain it, and then deal-

ing with system aging. Also, in academic environments, a research lab’s comput-

22

ing demands can grow or shrink based on current projects, interests, and funding

levels. These needs translate directly into a dynamic demand for computational in-

frastructure support.

Because of the global trend toward resource aggregation [10], it is likely that,

with time, organizations, labs, and universities will aggregate and virtualize many

of the dispersed computational resources into a few dense datacenters that will be

shared among all the users on as-needed basis [10]. Grid computing [21] repre-

sented a first step in this direction; cloud computing [9] represents the second step.

Having all resources aggregated in a single location where sharing and access

policies are defined opens opportunities for individual researchers, small labs, as

well as large institutions to gain access to desired resources when needed. How-

ever, tools and applications need to be able to adjust to such environments and

utilize them transparently, and, ideally, effectively. Figure 11 depicts this scenario.

In order to enable scientists to take advantage of these new models for com-

putational resource allocation, we have focused on provisioning a general solution

that can operate in the upcoming and developing infrastructures. One requirement

that such a solution has is that it must not require or impose specific demands but,

instead, must focus on utilizing the most general concepts that will persist beyond

any single infrastructure configuration. In addition, like the Galaxy application it-

self, this solution should be easy to utilize and not require informatics expertise.

Figure 11: Simplified overview of an aggregated distributed infrastructure and

it’s perception by users: (A) Users in different labs access a dedicated application

instance over the internet with nothing more than a web browser, (B) these appli-

cation instances appear to the users to be dedicated infrastructure with apparently

infinite compute and storage resources, but are in fact virtual resources (C) which

are allocated on demand from a large shared pool.

23

4.1 Galaxy and IaaS

To meet the goals stated above, we have decided to implement a solution that

targets the bottom-most layer of an aggregated infrastructure – Infrastructure-as-a-

Service (IaaS) level. Such solution relies only on the basic infrastructural compo-

nents that can be expected to exist in a range of aggregated infrastructures (i.e.,

customizable operating system with access to persistent storage). Furthermore, our

solution is implemented as a standalone application that does not require any ex-

ternal services (e.g., a broker service that coordinates user requests). This is an

important design feature because users do not have to supply their credentials to

anyone but the infrastructure providers. Overall, the described model minimizes

dependencies and contributes to the robustness of the application (which is essen-

tial in self-managed, distributed systems).

To minimize user’s exposure to the low-level infrastructure at which the system

operates, there is a need to abstract user interaction so that only high-level opera-

tions are perceived by the user. Such solution effectively bridges the low-level

IaaS design with the high-level, targeted Platform-as-a-Service (PaaS) solution. In

return, the user is completely abstracted from the infrastructural details but the

system design enjoys needed flexibility to be applicable in a range of custom envi-

ronments.

Figure 12 depicts design of the derived solution. As shown in the figure, a user

initiates interaction with the infrastructure through the local infrastructure console

manager (step 1). Depending on the implementation of the infrastructure, the con-

sole manager may be a set of simple command line tools or a web portal. Through

the given interface, the user instantiates the Galaxy Controller (GC) machine im-

age (step 2). GC is represented by a customized machine image that contains nec-

essary tools to configure, start, and support the Galaxy application. For the case of

virtualized infrastructures, GC image is an operating system image; for the case of

dedicated infrastructures, GC is a physical machine where GC has been precon-

figured. After a machine boots, GC starts automatically as a standalone process

(step 3). The benefit of GC running as a standalone process is that it is independ-

ent of other processes running on the instance, including the Galaxy application,

and can thus be used to control, manage, and react to the state of those processes.

With that, GC coordinates all of the required services and components that are re-

quired to deliver a ready, on-demand instance of Galaxy.

Because the GC image is common to all users of a given infrastructure and is

thus a stateless instance, in order to personalize it to a given user and enable data

persistence, GC needs to obtain user-specific data. This is realized by relying on

the existence of an external data repository. After the GC image boots, it auto-

matically retrieves GC-needed data from the repository (step 4). This data contains

references to persistent storage volumes that are then attached by GC to the run-

ning instance as file systems and used by Galaxy application (step 5). If this data

does not exist (as will be the case during first invocation of a given GC image by a

24

user), data is obtained from a public data repository and then updated and stored in

the user-specific repository for future invocations.

Once the GC has completed the initial system configuration, the user interacts

with it directly (through a web interface) to request desired resource allocation

(step 6). Requested resources are used by the Galaxy application associated with

given GC to run user submitted jobs. As requested resources are acquired, they are

automatically configured as GC workers (GC-w) (step 7). Lastly, the Galaxy ap-

plication is started and made accessible for end users (step 8). At this point, from

the end user’s standpoint, given instance of Galaxy application is used like any

other (steps 9 and 10). However, from the application administrator standpoint, the

application instance has the potential of scaling with user demand as well as ex-

hibiting portability across infrastructures.

The described architecture where a generic machine image is contextualized at

runtime [22] by the GC (step 4 in Figure 12) enables the same machine image to

be used as a base for the master and worker instances. This allows more stream-

lined machine image administration (i.e., less maintenance overhead) and enables

dynamic scaling of the size of a user’s cluster. Once an instance boots, through the

contextualization process, an instance is assigned a role of the master or worker.

Then, through cross-instance messaging, appropriate configuration can be com-

pleted allowing an instance to be added to an existing cluster at runtime.

The described architecture relies on only the basic services expected from any

IaaS provider, namely existence of a general-purpose user data repository an at-

tachable/mountable persistent storage. Any kind of a content delivery system can

serve as the persistent data repository, even if it is external to the IaaS provider.

Internal to GC, interaction with needed components can be implemented similar to

Figure 12. Architectural view of the process and components required to enable
scalable and user-specific deployment of (Galaxy) application in aggregated in-
frastructures.

25

the multiple job runners from the job manager component of the Galaxy applica-

tion. As a result, it is easy to envision immediate availability of support for multi-

ple IaaS providers.

In addition, the described approach allows a user to interacts with the system

through a web-based interface with all the necessary steps accomplished through a

guided wizard. Low-level technical details are abstracted from a typical user and

are automatically handled thus making the system easy to use. Lastly, because of

the distributed computing environment, the system was designed with an assump-

tion that components will fail. By having GC run as a meta-application that man-

ages lower level components and functionality, it is possible for it to automatically

address potential failures.

4.2 Galaxy and AWS

Recently, cloud computing [10] has emerged as a computational model that is

rooted in the concepts of aggregated infrastructure ideas discussed throughout this

section. In this model, computation and storage exist as virtual resources, which

can be dynamically allocated and released as needed. With many providers of

cloud computing services (e.g., Amazon Web Services (AWS), RackSpace, GoG-

rid, Mosso), this model presents an ideal scenario to verify the architecture de-

scribed in Section 4.1. We have selected AWS as the service provider to verify our

design because it represents a de facto standard in this area, showcased by proven

availability and reliability of its services. Furthermore, by initially focusing on a

well-accepted and readily available technology, benefits delivered by a given tool

are immediately available for consumption by potential users. Also, the infrastruc-

ture architecture and the API set forth by Amazon and used by an implementation

of GC have been accepted by other cloud infrastructure management projects

(e.g., Eucalyputs [23], OpenNebula [24], Nimbus [25]) allowing for smoother

transition as those services become more prominent or infrastructures based on

those managers emerge.

4.2.1 GC Implementation

In order to implement the described design, within AWS, there was a need to

create a customized Amazon Machine Image (AMI) packaged with necessary ap-

plications and services. Because it has to be possible for the same machine image

to be instantiated by multiple, independent users, the image could not be fully pre-

configured to contain all of the necessary user information (e.g., [26]). As a result

the image had to be configured to support boot time parameterization and contex-

tualization [22]. In addition, because of the amount of time and effort required to

update such image (e.g., each time an update to a tool is needed), we wanted to

26

minimize the number of tools embedded into the image and rely on more flexible

components that an instance could be associated with at runtime. As a result, gen-

erated AMI was preconfigured only with the basic components, including Python

interpreter, message queuing system, and necessary user accounts (e.g., galaxy,

postgres). All of the domain specific tools, Galaxy application, and the Galaxy

Controller are obtained at instance boot time from attachable disk volumes that are

easy to associate with individual users, perform tool updates, and persist beyond

lifetime of any one instance.

Internally, GC was implemented as a web app within the Galaxy framework

and enabled for standalone execution. At the implementation level, the GC is rep-

resented by two services, namely GC master and GC worker. The distinction

among services is determined at runtime, based on the given instance’s role, which

is determined at instance boot time. All of the instance contextualization, master-

worker communication, and status reporting is performed through a messaging

system implemented using the AMQP standard [27] and using a RabbitMQ8 server

deployed on the master instance.

Following the general steps described in Section 4.1, we next provide more de-

tailed actions performed after created machine image is instantiated:

1. User instantiates a master instance

2. As part of startup process, start RabbitMQ server, download GC source

code from either user’s data repository or the public data repository and

start the GC web application

3. Within GC, create attachable storage resources (EBS volumes in case of

AWS) from public snapshots for the Galaxy application and necessary

index files (i.e., datasets) used by several Galaxy tools; attach them to the

running instance, and import existing file systems

4. Start NFS and enable sharing of relevant directories

5. Unpack and configure SGE

6. Allow a user to, through the GC web interface, configure their cluster:

specify amount of persistent storage to be used for user data

7. Create the user data external storage resource and appropriate file system

8. Configure PostgreSQL database on the user storage resource to be used

by the Galaxy application

9. Start the Galaxy application.

a. Once Galaxy is ready, enable access to it from the web interface

10. The user can now start using the Galaxy application. As the need for clus-

ter nodes increases (or decreases), through the web interface, the user

may add (or remove) worker instances

a. As a worker instance boots, they mount NFS directories and no-

tify master as being ‘alive’

b. As instances report alive, authentication information to enable

SGE to submit jobs is exchange with the master.

8 http://www.rabbitmq.com/

27

In order to support dynamic scaling of a user’s cluster, the master repeats steps

9 and 10. Within the GC implementation, there is no distinction between the initial

cluster startup and later cluster size scaling. Namely, after a user requests to add a

number of worker instances, the master starts the instances specifying as part of

the user data that these instances are workers. As instances boot, they start the

worker configuration process and, through the messaging system, exchange

needed information with the master (e.g., public ssh keys, NFS mount points).

This allows the master to alter the configuration of the cluster and include those

worker instances into the resource pool. The same process is followed when down

scaling the size of the cluster.

Upon user-initiated termination of worker instances, GC stops all relevant serv-

ices, terminates worker instances, exports file systems and detaches external data

volumes. Because data volumes used containing tools and index files are not mod-

ified during the life of a Galaxy instance, those disk volumes are deleted. Next

time given instance is instantiated they will be created just the first time. User data

volume is obviously left untouched. Information about given volume is stored in a

user-specific persistent data repository (S3 bucket, in case of AWS).

4.2.2 Interacting with GC

GC, and thus the Galaxy application, is readily available for use by anyone9. A

completely configured and functional cluster can be instantiated in as little as 5

minutes for a cost of less than $1. To instantiate an instance of Galaxy on the

AWS cloud, and thus get access to the full spectrum of tools supported by Galaxy,

the following steps are required:
1. Create an AWS account and sign up for Elastic Compute Cloud (EC2)

and Simple Storage Service (S3) services
2. Use AWS Management Console to start an EC2 instance
3. Use GC2 web interface on started EC2 instance to start a desired number

of compute instances
4. Enjoy your personal instance of Galaxy on the cloud

Because AWS services implement a pay-as-you-go access model for compute

resources, it is necessary for every user of the service to register with the provider.

Once registered, the user is assigned an AWS access key and accompanying secret

key. Note that Step 1 is a one-time activity.

Step 2 is required every time a cloud instance of Galaxy is desired. As part of

the instance startup process, the user interacts with the infrastructure provider

management interface. In case of AWS, this can be either AWS Management

Console or command line tools. As part of this step, the user needs to choose ap-

propriate machine image and provide account information. The provided account

information is needed and used to acquire persistent storage for user specific data.

9 http://usegalaxy.org/cloud

28

Provided account information is used locally only by the particular instance user is

working with and is never shared or transmitted to another service or tool.

Once and instance boots and GC becomes available, through the web interface,

the user finalizes the cluster creation by specifying amount of persistent data stor-

age they would like to associate with the given cluster. This is required because of

the virtual and temporary structure of cloud instances: once an instance is shut

down, all modifications that were performed on the given system are lost. There-

fore, in order to preserve the user data beyond the life of an instance, the external

storage medium is required.

After the master instance completes the initial cluster setup and starts the Gal-

axy application, the user starts a desired number of worker instances. Moreover,

the user can dynamically scale the number of worker instances over the course of

life of the cluster. This is performed simply through the web interface while GC

automatically handled all aspects of instance startup and cluster configuration (as

described in Sections 4.1 and 4.2.1). Figure 13 captures GC’s current web inter-

face. As can be seen in this figure, under cluster status, small icons represent indi-

vidual worker instances. Furthermore, each icon graphically depicts the given in-

stance’s system load over the past 15 minutes (see Figure 14). Such representation

allows a user to immediately and quantitatively visualize the status and load of

their cluster.

Figure 13. GC web interface showing user controls and the cluster status.

If the cluster becomes loaded and user decides more worker instances are

needed, through the GC interface, the user can simply add additional worker in-

29

stances. GC starts the requested number of instances and automatically configures

those to be used by the cluster job manager, thus distributing the cluster’s work-

load. Likewise, if a cluster is underutilized, the user may specify a number of

worker instances to remove. Without disrupting currently running jobs or users

accessing Galaxy, GC reconfigures the cluster to remove and terminate those in-

stances. As par of future work, we will enable such cluster scaling to be done

automatically by GC (within user-specified bounds). Figure 14 depicts the process

of cluster scaling from the user’s standpoint.

Figure 14. The process of cluster size scaling from the user’s standpoint as in-

dicated in the Galaxy Cloud web interface.

5 Related Work

Historically, several attempts have been made for the integration of biological

analysis tools with the goal of making them available to bench biologists. These

include ISYS [28], Biology Workbench [29], PLATCOM [30] and the Sequence

Retrieval System [31]. ISYS is a downloadable platform, allowing software de-

velopers to add their own tools and databases. It includes a number of tools, such

as a sequence and annotation viewer, a BLAST search launcher, and an Entrez se-

quence retrieval module. An important feature of ISYS is its DynamicDiscovery

functionality, which suggests appropriate tools for a particular data type. How-

30

ever, ISYS requires programming experience and serves as a development plat-

form rather than a ready-to-use tool. Biology Workbench is a comprehensive web-

based col- lection of sequence analysis software. However, it is unsuitable for the

analysis of large datasets, and cannot be used with genomic sequences and their

associated annotations (these limitations are noted on the Biology Workbench

website). PLATCOM provides a variety of utilities for comparative sequence

analysis. However, this system lacks a history mechanism, and forces the user to

choose a tool first and then the data, while Galaxy focuses on data and then pro-

vides the user with analysis choices. SRS has been successfully used for providing

links to numerous databases and can, in principle, be used for tool integration us-

ing the complex “Icarus” language. Yet the existing public installations of SRS

feature very few tools due to configuration difficulty (e.g., SRS at EBI only fea-

tures EMBOSS, FASTA, BLAST, and HMMER) and cannot be scaled to analyze

genomic datasets. Importantly, SRS is commercial software, which, even if ob-

tained under an educational license, cannot be modified. On the other hand Galaxy

is absolutely free: the Galaxy source code is open to everyone and designed to

make extension and customization easy. This openness is a core principle of our

philosophy – drawing as many developers as possible into the software design

process will ensure the high usability and applicability of our product.

Recently a series of new approaches for designing pipelines and tool integra-

tion have been proposed. These include Taverna [32], [33] and Gene Pattern [6].

Taverna provides language and software components to facilitate building of

analysis workflows; it can be used to construct very complex distributed analyses,

but requires the user to install local software and manage many of the details of

invoking an analysis. As a result, it is most useful for computational users building

workflows over distributed systems and not immediately beneficial for experimen-

tal biologists. On the other hand, using Galaxy requires only a web browser, and

the user does not need to worry about the details of how complex analyses are al-

located to computing resources. In fact, Taverna and Galaxy are complementary –

Taverna workflows could be integrated into a Galaxy instance as tools. However,

our goal is to make workflows so simple that experimentalists can use them with-

out reading manuals. Galaxy workflows are based on the existing history system,

which has been attractive for many users due to its simplicity.

Gene Pattern is an analysis environment supporting gene expression, pro-

teomics, and association studies. It is distributed as a large, complex client/server

application requiring substantial expertise for installation and configuration. All

data in Gene Pattern come from the user – there is no notion of integrated data

sources available in Galaxy, namely direct connection to commonly used data-

bases such as UCSC Genome Browser, HapMap, or BioMart. Although integra-

tion of external tools is similar within Gene Pattern, the configuration files avail-

able within Galaxy offer more flexibility in terms of tool descriptions. In terms of

end user usability features, Gene Pattern does not provide support for user tags

while annotations are limited to workflows in form of an external document. Tag-

ging and annotation are tightly integrated within Galaxy, ensuring reproducibility

31

at all stages of an analysis. Gene Pattern supports sharing analyses and workflows

with individuals or groups through external software tools. Sharing of items

(datasets, histories, workflows) within Galaxy is supported at progressive levels

and published to Galaxy’s public repositories. Integration of sharing with Galaxy

Pages thus supports embedding, publishing, and reuse of relevant analysis infor-

mation. Lastly, Galaxy can readily be instantiated on a cloud computing infra-

structure thus eliminating immediate resource availability concerns.

6 Conclusions

eScience came about in response to the growing need to streamline and merge

computation and data analysis with scientific investigation. With the explosion of

scientific data over the past decade, many sciences are becoming computationally

driven. This is resulting in a shift in how science is done in those fields - a shift

toward computationally intensive tasks. However, obtaining results from data

analysis and computation does not come easy. Foremost, it requires development

and availability of domain-specific tools. Next, it requires familiarity and ability to

use those tools. Again, because computation has had a limited historical presence

in many sciences, this step represents a barrier. The learning curve is difficult to

be overcome because it requires scientists to step outside of their domain and be-

come proficient in another science - computer science. Specifically, a scientist

more often than not needs to learn how to write code and patch existing code. Not

only is this often perceived as a significant burden by scientists but it leads to poor

code design and likely poor tool development. Most importantly, because of the

many ad-hoc scripts or interactive methods used to perform an analysis, obtained

results are rarely reproducible. Taken together, these issues leads to poor science.

To facilitate computational science, streamlined access to data analysis is

needed. There is a need for access to domain specific tools whose use does not

mandate informatics expertise. Such an approach enables domain scientists to fo-

cus on their own research rather than being bogged down with low-level computa-

tional details. In response to this need, the Galaxy framework was developed.

Galaxy provides abstractions for tools that perform data analysis. Within Gal-

axy, seamless integration of one tool’s output into another tool’s input is sup-

ported from the ground up. Galaxy provides consistent and usable interfaces that

shift the focus from running a tool to analyzing results. With a broad range of bio-

informatics tools available by default within a Galaxy instance, Galaxy targets

bioinformatics data analysis, with a specific focus on comparative and functional

genomics, including the use of data generated with high-throughput DNA se-

quencing technologies [34], [35]. Furthermore, the Galaxy framework allows for

easy addition of tools, thus enabling the framework to be extended to other do-

32

mains (one known example includes the machine learning domain10). With con-

tinuous research and development, Galaxy offers a ready solution to many re-

searchers in eScience.

Nonetheless, Galaxy lacks the flexibility often encountered in research envi-

ronments. Due to the continuous fluctuation of demand and supply for compute

infrastructure, there is a need for Galaxy to be able to scale its computing usage

accordingly. Furthermore, with the global increase in power and cooling demands

of compute resources [36], coupled with the associated environmental impact, or-

ganizations are looking to reduce power usage and cut costs by aggregating all of

the resources into dense data centers that can offer better economies of scale. As a

result, there is a need for established tools to be able to utilize such infrastructures

without being a major disruption to users. Galaxy Controller represents a step in

that direction. Infrastructure independent design enables it to utilize upcoming in-

frastructures while providing a ready solution for current needs. Coupled with the

Galaxy application, presented method provides a complete solution for end users:

rooted in the basic requirements of IaaS while delivering SaaS functionality and

avoiding exposure to the informatics details is a gateway to eScience.

Acknowledgements

Galaxy is developed by the Galaxy Team: Enis Afgan, Guruprasad Ananda,

Dannon Baker, Dan Blankenberg, Ramkrishna Chakrabarty, Nate Coraor, Jeremy

Goecks, Greg Von Kuster, Ross Lazarus, Kanwei Li, Anton Nekrutenko, James

Taylor, and Kelly Vincent. We thank our many collaborators who support and

maintain data warehouses and browsers accessible through Galaxy. Development

of the Galaxy framework is supported by NIH grants HG004909 (A.N. and J.T),

HG005133 (J.T. and A.N), and HG005542 (J.T. and A.N.), by NSF grant DBI-

0850103 (A.N. and J.T) and by funds from the Huck Institutes for the Life Sci-

ences and the Institute for CyberScience at Penn State. Additional funding is pro-

vided, in part, under a grant with the Pennsylvania Department of Health using

Tobacco Settlement Funds. The Department specifically disclaims responsibility

for any analyses, interpretations or conclusions.

References

[1] NCBI. (2009, February 3). GenBank Statistics. Available:

http://www.ncbi.nlm.nih.gov/Genbank/genbankstats.html

10 http://galaxy.fml.tuebingen.mpg.de/

33

[2] E. Huedo, R. S. Montero, and I. M. Llorente, "A Framework for

Adaptive Execution on Grids," Journal of Software - Practice and

Experience, vol. 34, issue 7, pp. 631-651, June 2004.

[3] E. Afgan and P. Bangalore, "Dynamic BLAST – a Grid Enabled

BLAST," International Journal of Computer Science and Network

Security (IJCSNS), vol. 9, issue 4, pp. 149-157, April 2009.

[4] D. Blankenberg, J. Taylor, I. Schenck, J. He, Y. Zhang, M. Ghent, N.

Veeraraghavan, I. Albert, W. Miller, K. Makova, R. Hardison, and A.

Nekrutenko, "A framework for collaborative analysis of ENCODE data:

making large-scale analyses biologist-friendly," Genome Research, vol.

17, issue 6, pp. 960-964, Jun 2007.

[5] J. Taylor, I. Schenck, D. Blankenberg, and A. Nekrutenko, "Using

Galaxy to perform large-scale interactive data analyses," Current

Protocols in Bioinformatics, vol. 19, pp. 10.5.1-10.5.25, Sep 2007.

[6] M. Reich, T. Liefeld, J. Gould, J. Lerner, P. Tamayo, and J. Mesirov,

"GenePattern 2.0," Nature genetics, vol. 38, issue 5, pp. 500-501, 2006.

[7] B. Langmead, C. Trapnell, M. Pop, and S. Salzberg, "Ultrafast and

memory-efficient alignment of short DNA sequences to the human

genome," Genome biology, vol. 10, issue 3, p. 25, Mar 4 2009.

[8] P. Kosakovsky, S. Wadhawan, F. Chiaromonte, G. Ananda, W. Chung, J.

Taylor, and A. Nekrutenko, "Windshield splatter analysis with the

Galaxy metagenomic pipeline," Genome Research, vol. 19, issue 11, Oct

9 2009.

[9] R. Buyya, C. S. Yeo, S. Venugopal, J. Broberg, and I. Brandic, "Cloud

computing and emerging IT platforms: Vision, hype, and reality for

delivering computing as the 5th utility," Future Generation Computer

Systems, vol. 25, issue 6, pp. 599-616, June 2009.

[10] M. Armbrust, A. Fox, R. Griffith, A. D. Joseph, R. Katz, A. Konwinski,

G. Lee, D. Patterson, A. Rabkin, I. Stoica, and M. Zaharia, "Above the

Clouds: A Berkeley View of Cloud Computing," University of California

at Berkeley UCB/EECS-2009-28, February 10 2009.

[11] J. Nielsen, Designing web usability, 1st ed.: Peachpit Press, 1999.

[12] S. Peleg, F. Sananbenesi, A. Zovoilis, S. Burkhardt, S. Bahari-Javan, R.

Agis-Balboa, P. Cota, J. Wittnam, A. Gogol-Doering, and L. Opitz,

"Altered Histone Acetylation Is Associated with Age-Dependent

Memory Impairment in Mice," Science, vol. 328, issue 5979, pp. 753-

756, 2010.

[13] S. Kosakovsky Pond, S. Wadhawan, F. Chiaromonte, G. Ananda, W.

Chung, J. Taylor, and A. Nekrutenko, "Windshield splatter analysis with

the Galaxy metagenomic pipeline," Genome Research, vol. 19, issue 11,

pp. 2144-2153, 2009.

[14] K. Gaulton, T. Nammo, L. Pasquali, J. Simon, P. Giresi, M. Fogarty, T.

Panhuis, P. Mieczkowski, A. Secchi, and D. Bosco, "A map of open

34

chromatin in human pancreatic islets," Nature genetics, vol. 42, issue 3,

pp. 255-259, 2010.

[15] R. Kikuchi, S. Yagi, H. Kusuhara, S. Imai, Y. Sugiyama, and K. Shiota,

"Genome-wide analysis of epigenetic signatures for kidney-specific

transporters," Kidney International, 2010.

[16] J. Parkhill, E. Birney, and P. Kersey, "Genomic information

infrastructure after the deluge," Genome biology, vol. 11, issue 7, p. 402,

2010.

[17] N. Singer. (2009, January 12). More chip cores can mean slower

supercomputing. Available:

http://www.sandia.gov/news/resources/news_releases/more-chip-cores-

can-mean-slower-supercomputing-sandia-simulation-shows/

[18] D. Eadline. (2010, March 3) HPC Madness: March Is More Cores

Month. LINUX Magazine. Available: http://www.linux-mag.com/id/7722

[19] A. Menon, J. Santos, Y. Turner, G. Janakiraman, and W. Zwaenepoel,

"Diagnosing performance overheads in the Xen virtual machine

environment," in 1st ACM/USENIX international conference on Virtual

execution environments, Chicago, IL, 2005, pp. 13-23.

[20] J. Hamilton. (2008, November 28). Cost of Power in Large-Scale Data

Centers. Available:

http://perspectives.mvdirona.com/2008/11/28/CostOfPowerInLargeScale

DataCenters.aspx

[21] The Grid: Blueprint for a New Computing Infrastructure, 1st ed.: Morgan

Kaufmann Publishers, 1998.

[22] K. Keahey and T. Freeman, "Contextualization: Providing one-click

virtual clusters," in IEEE International Conference on eScience,

Indianapolis, IN, 2008, pp. 301-308.

[23] D. Nurmi, R. Wolski, C. Grzegorczyk, G. Obertelli, S. Soman, L.

Youseff, and D. Zagorodnov, "The eucalyptus open-source cloud-

computing system," in Cloud Computing and Its Applications, Shangai,

China, 2008, pp. 1-5.

[24] I. M. Llorente, R. Moreno-Vozmediano, and R. S. Montero, "Cloud

Computing for On-Demand Grid Resource Provisioning," Advances in

Parallel Computing, vol. 18, pp. 177-191, 2009.

[25] K. Keahey, I. Foster, T. Freeman, and X. Zhang, "Virtual Workspaces:

Achieving Quality of Service and Quality of Life in the Grid," Scientific

Programming Journal, Special Issue: Dynamic Grids and Worldwide

Computing, vol. 13, issue 4, pp. 265-276, 2005.

[26] H. Nishimura, N. Maruyama, and S. Matsuoka, "Virtual clusters on the

fly-fast, scalable, and flexible installation," in CCGrid Rio de Janeiro,

Brazil, 2007, pp. 549-556.

[27] A. W. Group, "AMQP - A General-Purpose Middleware Standard," ed, p.

291.

35

[28] A. Siepel, A. Farmer, A. Tolopko, M. Zhuang, P. Mendes, W. Beavis,

and B. Sobral, "ISYS: a decentralized, component-based approach to the

integration of heterogeneous bioinformatics resources," Bioinformatics,

vol. 17, issue 1, pp. 83-94, Aug 14 2001.

[29] S. Subramaniam, "The Biology Workbench--a seamless database and

analysis environment for the biologist," Proteins, vol. 32, issue 1, pp. 1-

2, Jul 1 1998.

[30] K. Choi, Y. Ma, J.-H. Choi, and S. Kim, "PLATCOM: a Platform for

Computational Comparative Genomics," Bioinformatics, vol. 21, issue

10, pp. 2514-2516, Feb 24 2005.

[31] T. Etzold and P. Argos, "SRS--an indexing and retrieval tool for flat file

data libraries," Bioinformatics, vol. 9, issue 1, pp. 49-57, 1993.

[32] E. Kawas, M. Senger, and M. D. Wilkinson, "BioMoby extensions to the

Taverna workflow management and enactment software," BMC

Bioinformatics, vol. 7, p. 253, 2006.

[33] D. Hull, K. Wolstencroft, R. Stevens, C. Goble, M. R. Pocock, P. Li, and

T. Oinn, "Taverna: a tool for building and running workflows of

services," Nucleic Acids Research, vol. 34, issue Web Server issue, pp.

W729-32, 2006.

[34] A. Mortazavi, B. Williams, K. McCue, L. Schaeffer, and B. Wold,

"Mapping and quantifying mammalian transcriptomes by RNA-Seq,"

Nature methods, vol. 5, issue 7, pp. 621-628, 2008.

[35] S. Pepke, B. Wold, and A. Mortazavi, "Computation for ChIP-seq and

RNA-seq studies," Nature methods, vol. 6, pp. S22-S32, 2009.

[36] B. Moore, "Taking the data center: Power and cooling challenge," Energy

User News, vol. 27, issue 9, p. 20, 2002.

