
Building and Provisioning Bioinformatics

Environments on Public and Private Clouds

Enis Afgan1,2,4, Konstantinos Krampis3, Nuwan Goonasekera
4
, Karolj Skala1 and James Taylor2

1
Center for Informatics and

Computing (CIR)

Ruđer Bošković Institute

(RBI)

Zagreb, Croatia

2
Department of Biology

Johns Hopkins University

Baltimore, MD, USA

3
Dept. of Biological

Sciences, Hunter College

City University of New

York,

New York, NY, USA

4
Victorian Life Sciences

Computation Center

University of Melbourne

Melbourne, Australia

Abstract - Unlike newly developed web applications that can

be designed from the ground up to utilize cloud APIs and

run natively within cloud infrastructure, most complex

bioinformatics pipelines that are in advanced states of

development can only be encapsulated within VMs along

with all their software and data dependencies. To take

advantage of the scalability offered by the cloud, additional

frameworks are required to create virtualized compute

clusters and emulate the most common infrastructure found

on institutional resources where most of the existing

bioinformatics pipelines are generally run. In this paper we

describe one such framework, its compatibility with

multiple Clouds and present an automated process for

deploying the entire system so it can be made

easily available on any Cloud.

I. INTRODUCTION

The adoption of cloud computing technologies has
provided an opportunity to effectively democratize the
field of computational biology, meaning that individual
researchers and labs can now have access to the resources
that were previously only available to the large
sequencing and bioinformatics centers [1]. However, this
presents challenges of its own, such as the need to
configure and utilize bioinformatics software for next-
generation sequencing, where significant expertise is
required on UNIX based operating systems, programming
languages, software compilation from source code, file
systems, and large-scale data management [2]. For smaller
laboratories this can become a significant obstacle,
because in addition to coming up with the funds for
building an informatics infrastructure with the capacity to
handle large computations, they also need to hire trained
bioinformaticians competent to install, configure and run
sequence analysis software tools and manage the data.
This can present a higher expense than that of acquiring
the hardware.

The cloud computing model has showcased its ability
to transform how access to compute resources is realized
and has delivered on the notion of Infrastructure-as-Code
[3]. However, this model presents the user with low-level
resources that still need to be procured, configured, and
managed. In the context of bioinformatics, this means
installing required tools and reference data and setting up
a virtualized cluster environment. As data volumes
increase, this also requires utilizing compute and storage
resources in a scalable manner. To address this, we have

been developing CloudMan [4] as a versatile solution for
enabling and managing compute clusters in cloud
environments via a simple GUI web interface or a
programmable API. As a full-fledged deployment,
CloudMan integrates with the Galaxy framework [5], [6]
and provides a comprehensive workbench for biomedical
data analysis on the Cloud [7]; it enables one to
seamlessly acquire cloud resources, assemble those into a
compute cluster, upload data, perform data analysis by
chaining output of one tool as the input of another,
visualize the data, and finally share it. This is the end-user
view. Internally, CloudMan manages cloud resources,
operating system services, and application-level services.

As part of this article, we describe how we have
extended CloudMan into an interoperable solution for
multiple Clouds and built a framework for allowing
anyone to deploy their own version. We describe the
process for building the required cloud resources, how to
launch an instance of the deployed components and how
to configure CloudMan to manage a launched instance
and correctly orchestrate any required runtime
components. Once deployed, users will have a functional
bioinformatics workbench and a dynamically scalable
cluster for data analysis on a given cloud.

II. BACKGROUND

In recent years, cloud based bioinformatics data
analysis systems such as Galaxy [7], CloVR [8], Cloud
BioLinux [9] and bioKepler [10] were released, allowing
smaller laboratories and institutions to perform large-scale
data analysis with genomic datasets. All these platforms
are available on the Amazon Elastic Compute (EC2)
cloud, which provides data centers across the world,
allowing any researcher worldwide to connect to the cloud
end-point closest to their geographic boundaries.

Researchers or institutions with access to computing
resources at their home institution have the option to
implement their own private Cloud platform and run
Virtual Machine (VM) servers, using the open-source
Eucalyptus [11] or OpenStack cloud middleware.
OpenStack is the official Cloud platform bundled with the
Ubuntu Linux operating system

1
and can be readily

installed on clusters running other Linux distributions
2
,

1
 http://www.zdnet.com/article/ubuntu-syncs-up-with-

2
 http://docs.openstack.org/

and Eucalyptus is similar. Both of these Cloud platforms
offer Application Programming Interfaces (APIs)
compatible with Amazon’s EC2 service, and applications
developed either on Eucalyptus or OpenStack work on the
Amazon Cloud and vice-versa. Furthermore, users have
the option to copy and execute VM server snapshots
across installations of these Clouds as has been
demonstrated with Cloud BioLinux.

For users who do not own local compute resources,
nor have funds available to lease computing time from a
public Cloud provider, there is the possibility of using
government-funded Cloud infrastructures, such as the US-
based Open Science Data Cloud

3
, the Australian NeCTAR

Research Cloud
4
, or Helix-Nebula in the EU

5
. In addition,

a number of academic computing centers in both the US
and other countries have similar clusters with OpenStack
installed

6
, to which scientists can request access.

III. DEPLOYING AND PROVISIONING VIRTUAL

ENVIRONMENTS

Despite the general availability of cloud computing
resources around the world, due to the complexity of
setting up a functional bioinformatics platform for data
analysis, we have (1) expanded the capabilities of
CloudMan to be interoperable with multiple cloud
providers; (2) devised an automated method for deploying
a complete system on compatible clouds; and (3)
developed a launcher application allowing end-users to
provision instances of the platform when and where
needed. The overall concept is depicted in Figure 1 and

3
 https://www.opensciencedatacloud.org/

4
 http://nectar.org.au/research-cloud

5
 http://www.helix-nebula.eu/

6
 https://www.tacc.utexas.edu/systems/rodeo

each of these contributions is described in the following
sections.

A. A Multi-cloud Cluster Manager

Architecturally, CloudMan is a standalone application
written in Python that orchestrates cloud components
(virtualized compute resources and software programs) to
deliver persistent and functional user-level services (see
[12] for the implementation details). To operate,
CloudMan uses a number of cloud-level features and
assembles those into a functional platform for performing
data analysis [4]. Internally, CloudMan abstracts away the
interaction with multiple cloud providers via a common
cloud interface (cloud_interface). All the internal
methods utilize the given interface providing uniformity
throughout the code while supporting multiple cloud
technologies. Compatibility with multiple clouds is
achieved via a custom implementation of the cloud
interface for each of the supported clouds (AWS,
OpenStack and Eucalyptus). Adding support for future
clouds is a matter of implementing the methods defined in
the cloud_interface, with the option to inherit from the
default AWS implementation and, again, identifying and
implementing only the differences.

Because a running instance of the CloudMan platform
represents a composition of multiple cloud services, in
order to deploy the platform, it is necessary for the cloud
middleware to provide the required features, as follows:

• Customizable machine image: this is the VM itself
containing the operating system (Ubuntu) and
required system level packages for applications
such as Nginx, Slurm, RabbitMQ.

• Instance user data: this enables runtime
contextualization [13], which is what makes it

Figure 1. The effort described in this paper highlights the features of CloudMan as a platform for building and provisioning bioinformatics

workbenches across multiple Clouds. With the multi-cloud compatibility of CloudMan (Section 3.A), (1) a deployer would use the provided

automation methods to build and link the required cloud resources, tailored to the needs of the given research community (Section 3.B). Then, (2) a

group leader, system administrator or even a domain researcher uses a launcher app to provision any number of instances of the workbench and
possibly further customize those with custom data or tools (Section 3.C). Finally, (3) domain researchers use the workbench in their daily routine.

possible to have different and independent
instantiations of the same platform. Sample data
included as part of the instance data includes the
API keys that CloudMan should use to connect to
the cloud provider.

• Security groups: a virtual firewall offered by the
cloud provider that permits selective traffic to
one’s compute instances based on user-defined
access rules. CloudMan uses HTTP, SSH, FTP
and several custom ports to enable access to the
running services.

• Persistent POSIX data storage: this is where the
user-uploaded and analyzed data is stored, as well
as installed tools, databases, and tool
configurations; it is leveraged to provide
longevity beyond the uptime of an instance.
Ideally, this storage is provided in the format of
block storage devices of arbitrary size (i.e., data
volumes) but other storage devices can be used
instead, including mountable external file
systems, such as NFS or Gluster, or the ephemeral
storage on individual instances.

• Block storage snapshots: given that a significant
amount of bioinformatics data is read-only
reference genome data, the CloudMan platform
maximizes data reuse by utilizing a single source
of this type of data for multiple deployed
instances of the platform. Technically, this is
delivered via point-in-time block storage
snapshots, which are converted into data volumes
at runtime. To realize the reuse aspect of this data,
the snapshots or archives need to be sharable.
Alternatively, it is possible to use "tarballs" of file
systems, which are archived in an object store and
extracted at runtime onto an instance’s ephemeral
storage.

• Object store: persistent configuration data
describing a given instance of the platform is
stored in a globally accessible object store and it
is used to recompose the CloudMan platform after
it had been shut down. Information about running
platform services (i.e., applications), utilized
resources (e.g., volume, snapshot, machine
image), and the CloudMan runtime code are
stored here.

• Per object ACL controls in the object store: in
order to enable instance sharing [14] with
individual users, it should be possible to set
Access Control List (ACL) permissions on each
individual object inside the object store. Note that
this is a requirement for the instance sharing
functionality only.

• Resource metadata: popularly known as tags,
assigning metadata to each of the utilized cloud
resources helps identify all the components
making up the complete platform. It also provides
a fallback in case the platform needs to be
recreated by hand following an unexpected
corruption.

Given the feature-set of today’s clouds, the above list
is considered quite minimal and we strive towards
minimizing it further. In the meantime, the required
resources are available from a variety of cloud
providers/middleware as bare-bones resources that behave
consistently across those, making it possible to create the
cross-cloud platform being described in this paper. This
approach is in contrast to using custom (or high-level)
services offered by a specific cloud provider and thus
becoming locked-in to the given cloud or cloud features.

B. Automating Component Deployment

The previous section describes the multi-cloud support
provided by CloudMan as a reusable framework and
outlines the set of requirements a target Cloud must
posses. In this section, we present a method for deploying
the complete CloudMan platform. By deploying, we mean
building the necessary components and making them
available on the target cloud. These components will be
joined at runtime (see next section) to deliver a functional,
user-facing platform.

The process of deploying the required components has
been automated using the Ansible automation framework.
Ansible is a configuration management and provisioning
tool; it uses files in YAML format to allow users to define
tasks (e.g., apt-get update) and it then executes those
tasks on target resources in an idempotent fashion. It uses
SSH to communicate with target resources, hence
imposing minimal requirements on setup. Conceptually,
Ansible allows one to define reusable roles, which are
composed of multiple tasks. It further allows multiple
roles to be assembled into more comprehensive playbooks
that can mix and match functionality offered by individual
roles.

For the purposes of deploying a bioinformatics
workbench backed by the CloudMan platform, we have
developed a set of Ansible roles and assembled those into
a playbook

7
. As stated above and described in detail in

[12], the overall platform requires multiple components:
the base machine image, an instance of the tools file
system, and an instance of a file system containing
indexed reference genomes. The playbook offers the
capacity to build these components in an automated
fashion. To start, it is necessary to build the machine
image. This step leverages Packer

8
, which is an additional

layer of automation on top of Ansible. It handles
provisioning of a VM on the target cloud, invoking the set
of Ansible roles for building the machine image, creating
the machine image, and cleaning up. Because Packer can
run in parallel on multiple targets, it is possible to build
the machine image with a single command (e.g., packer
build cloudman.json) on multiple clouds at once. The
built machine image will contain the required system
packages and libraries, FTP server, Nginx proxy server,
Slurm cluster manager and required configurations (e.g.,
users, environment settings).

Next, it is necessary to build the core file system,
called galaxyFS. This file system holds all the tools,
databases, the Galaxy application, and configuration

7
 https://github.com/galaxyproject/galaxy-cloudman-playbook

8
 http://packer.io

options that will be available via the workbench. Building
galaxyFS is realized by launching an instance of the
machine image built in the previous step, adding a file
system of desired size (e.g., 10GB) via CloudMan’s
Admin page (note that CloudMan will be available
because we are now using the image built in the previous
step), and running the available Ansible roles. The roles
will configure and initialize a PostgreSQL database as
well as download and configure the Galaxy application
with production settings. Installing the desired tools is
realized via the ToolShed [15]. This step has been
automated via a custom Python script that leverages the
BioBlend API [16], [17] and installs more than a hundred
tools at once. The list of installed tools is provided in a
configuration file and can hence be easily modified. Once
the process has been completed, it is necessary to create a
snapshot of the resulting file system, which can be
achieved via CloudMan’s Admin page.

Similar to building the galaxyFS, it is necessary to
build indicesFS - a file system containing desired
reference genomes. The process is similar in that a new
file system of adequate size needs to be added. Adding the
reference genomes is performed via Galaxy Data
Managers [18], which integrate with Galaxy and allow
one to simply choose which genomes to include. Once the
process has been completed, it is also necessary to create a
snapshot of the resulting file system. Finally, it may be
desirable to make the created snapshots public (or share
them with select users) so others can launch instances of
the deployed components (see next section). Also note
that instead of creating volume snapshots, it is possible to
create downloadable archives or shared file systems but,
for brevity, we focus on volume snapshots alone.

C. Provisioning

Once the required components have been built, they
need to be assembled into a provisioned instance of the
platform. Instances can be provisioned by projects or labs

to offer an ‘always-on’ ready-to-use workbench or by
individual users on an as-needed basis (see Section IV).
To make the process accessible, we have further
automated the provisioning process via launcher web
applications.

The build process described in the previous section
produces a machine image and two file system snapshots.
The provisioning process launches a VM instance based
on the image, which starts CloudMan, and CloudMan then
creates volumes based on the previously created snapshots
to make functional file systems (along with setting up a
virtual cluster and starting several service processes).
Before an instance can be provisioned, it is necessary to
compose the instance user data that contains access details
for the given Cloud (e.g., region endpoints, ports) and
information about the cluster (e.g., cluster name, access
credentials). Once an instance of the image is launched,
CloudMan will automatically start and continue the
workbench contextualization process. To obtain the
snapshot ID’s, CloudMan refers to the default_bucket
that is passed in with user data. This is an accessible
object store container where a file (by default
snaps.yaml) is stored and contains the details about the
snapshots and corresponding file systems (see Table I).
CloudMan will read the contents of the given file and
proceed with setting up the system.

The above process can be somewhat detail-oriented
and technical in nature. To simplify it, we have introduced
a notion of a launcher web application that will handle the
provisioning process automatically. The launcher app
offers users a web form asking for cloud access
credentials, a name for the instance, and a choice of VM
type. The app then composes and formats the required
information, instantiates an instance of the base machine
image and informs the user when the launch process has
completed. It also allows a previously created cluster to be
readily recreated. There are two launcher applications
available: one within the Galaxy application itself
(CloudLaunch) and a standalone one (BioCloudCentral).
CloudLaunch is automatically available on any Galaxy
instance (at /cloudlaunch URI) but requires a local
instance of Galaxy (a public one is available at
https://usegalaxy.org/cloudlaunch). Alternatively,

TABLE I. A SAMPLE FROM SNAPS.YAML CONFIGURATION FILE. THE

FILE STRUCTURE ALLOWS MULTIPLE CLOUDS, MULTIPLE REGIONS,
AND MULTIPLE DEPLOYMENTS WITHIN A REGION TO BE SPECIFIED

THAT CAN BE READ BY THE LAUNCHER APPS AND CLOUDMAN TO

PROPERLY ASSEMBLE AN INSTANCE OF THE PLATFORM.

version: 1

clouds:

 - name: amazon

 regions:

 - deployments:

 - name: GalaxyCloud

 filesystems:

 - name: galaxy

 roles: galaxyTools,galaxyData

 snap_id: snap-adad90fc

 - name: galaxyIndices

 roles: galaxyIndices

 snap_id: snap-5b030634

 default_mi: ami-118bfc78

 bucket: cloudman

 name: us-east-1

- name: nectar

<include details about other clouds/regions>

Figure 2. The process of deploying an instance of the platform, also

showing all the required components.

BioCloudCentral can be installed on a dedicated host and
used independently of Galaxy (a public instance of this
application is available at https://biocloudcentral.org/).

Figure 2 summarizes the described effort: after the
required set of components has been built and registered
in snaps.yaml, the launcher app is used to provision an
instance of the platform. After the contextualization steps
have completed, the user can start using the platform.

IV. DEMONSTRATION

The effort described in this paper allows anyone to
build their own deployment of the CloudMan platform
and the associated bioinformatics workbench. It further
allows users to launch their own instances of the platform
on the clouds on which it has been deployed. Currently, in
addition to the long-standing deployment on AWS, the
platform has been deployed on the Australian research
cloud, NeCTAR; these represent two flagship
deployments of the platform that are supported by the
authors. Other deployments also exist but have been done
by independent projects at their home institutions. Figure
3 captures the number of times the platform has been
provisioned on the AWS and NeCTAR clouds over the
past three years. The figure indicates that the NeCTAR
cloud, despite the fact that it is available only to
Australians, has been seeing approximately two to three
times the number of instantiations as the world-wide
deployment on AWS. We attribute this to the fact that the
NeCTAR cloud is free of cost and that the Australian
community has largely moved ‘into’ the cloud, especially
for training and teaching purposes.

In addition to the count of provisioned platforms, the
authors have been maintaining an always-on instance of
the CloudMan platform on the NeCTAR cloud as part of
the Genomics Virtual Laboratory (GVL) project

9
. This

instance of the platform offers an instance of the Galaxy

9
 https://genome.edu.au/

application that has been tailored for bioinformaticians
training. During the course of the GVL project, a number
of tutorials has been developed that demonstrate
bioinformatics data analysis activities, such as variant
calling or RNA-Seq analyses

10
. The instance, called

galaxy-tut (available at http://galaxy-tut.genome.edu.au/),
is where the tutorial data and tools are hosted, representing
a fertile playground for training sessions. Besides being
used during live training sessions, the instance is always
available for anyone to follow the tutorials at his or her
own pace. To accommodate these scenarios, the compute
infrastructure behind the galaxy-tut user interface needs to
scale with demand: as a lab full of students initiates a
mapping job, the resource requirements rapidly grow. At
the end of the compute-intensive portion of a tutorial, or
during non-teaching periods, the resource requirements
are much lower. The cloud model fits this scenario
perfectly and the CloudMan platform is entrusted with
keeping up with the cycle of requesting, configuring,
managing, and releasing the necessary resources.

The galaxy-tut instance was launched as a default
CloudMan instance on the NeCTAR research cloud and
then manually customized to include all the data and
Galaxy histories required for the tutorials. The master
instance of the CloudMan cluster is running on an extra-
large instance type (8 virtualized CPU cores, 16GB
RAM). During training sessions, running of the jobs on
the master instance is disabled via CloudMan’s Admin UI
and additional cluster nodes are explicitly launched. In
addition, CloudMan’s auto-scaling is left on to
accommodate possible spikes in usage. The instance has
nearly 500 registered users, stores 1TB of user data, and
runs approximately 2000 jobs per month.

We have also deployed and run CloudMan and Galaxy
on an experimental Eucalyptus cloud installation at the J.
Craig Venter Institute

11
. The installation comprised of four

10

 https://genome.edu.au/wiki/Learn
11

 http://www.jcvi.org/

Figure 3. The process of deploying an instance of the platform, also

showing all the required components.

Figure 3. The process of launches per month of the CloudMan platform on two clouds, AWS and NeCTAR.

identical physical compute servers (16 core, 32GB
memory, 1TB disk each). One of these servers was used
as the cloud’s head node to run Cloud Controller (CLC)
service of Eucalyptus, and the remaining nodes running
the passive Node Controllers (NCs) for worker VMs. The
CloudMan framework has enabled us to bootstrap on-
demand virtualized compute clusters with an easily
accessible Galaxy interface on our private cloud. By
simply starting with a pre-configured VM dropped on the
CLC node, and configuring the Galaxy cluster endpoint to
be handled by CloudMan, we were able to instantiate
multiple transient VMs for parallel job execution across
the Eucalyptus cloud nodes with CloudMan performing
the initialization, management and termination of the
VMs.

V. CONCLUSIONS

Dealing with the infrastructure and system level
operations, such as acquiring cloud instances or managing
operating system level services, requires a significant
investment in time and expertise. Yet, for modern day
bioinformatics it is an essential requirement. In our
previous work, we have developed a system that provides
a ready-to-use bioinformatics workbench with dozens of
tools and gigabytes of reference genome data on the AWS
cloud. This paper describes the effort of making the
overall system underlying the workbench compatible with
multiple Clouds and an automated process for deploying
it. This makes it possible for anyone to deploy their own
instance of the platform on a private cloud or under their
own account on a public account. Each deployed instance
can have a custom set of tools and reference genome data
available, which are tailored to the specific needs of a
group or an institution. Once deployed, others can launch
the given instance of the workbench via provided launcher
web applications.

ACKNOWLEDGMENTS

The efforts of the Galaxy Team (Dan Blankenberg,
Dave Bouvier, Martin Cech, Dave Clements, Carl
Eberhard, Jeremy Goecks, Nitesh Turaga, Sam Guerler,
Jennifer Jackson and Anton Nekrutenko) were
instrumental in making this work happen. This project was
supported through grant number HG005542 from the
National Human Genome Research Institute, National
Institutes of Health as well as grants HG005133,
HG004909 and HG006620 and NSF grant DBI 0543285.
Additional funding is provided by Huck Institutes for the
Life Sciences at Penn State and, in part, under a grant with
the Pennsylvania Department of Health using Tobacco
Settlement Funds. The Department specifically disclaims
responsibility for any analyses, interpretations or
conclusions. Additional funding has been provided by the
EU FP7-PEOPLE programme, under grant 277144.
Further funding has been provided by the Australian
NeCTAR project, under the Genomics Virtual Laboratory.

REFERENCES

[1] E. E. Schadt, M. D. Linderman, J. Sorenson, L. Lee, and G. P.

Nolan, “Computational solutions to large-scale data

management and analysis.,” Nature Reviews Genetics, vol. 11,

no. 9, pp. 647–57, Sep. 2010.

[2] M. C. Schatz and B. Langmead, “The DNA data deluge,”

IEEE Spectrum, vol. 50, pp. 28–33, 2013.

[3] M. C. Schatz, B. Langmead, and S. L. Salzberg, “Cloud

computing and the DNA data race.,” Nature Biotechnology,

vol. 28, pp. 691–693, 2010.

[4] E. Afgan, D. Baker, N. Coraor, B. Chapman, A. Nekrutenko,

and J. Taylor, “Galaxy CloudMan: delivering cloud compute

clusters,” BMC bioinformatics, vol. 11 Suppl 1, p. S4, 2010.

[5] J. Goecks, A. Nekrutenko, and J. Taylor, “Galaxy: a

comprehensive approach for supporting accessible,

reproducible, and transparent computational research in the

life sciences,” Genome Biology, vol. 11, no. 8, p. R86, Jan.

2010.

[6] E. Afgan, J. Goecks, D. Baker, N. Coraor, A. Nekrutenko, and

J. Taylor, “Galaxy - a Gateway to Tools in e-Science,” in

Guide to e-Science, X. Yang, L. Wang, and W. Jie, Eds.

Springer, 2011, pp. 145–177.

[7] E. Afgan, D. Baker, N. Coraor, H. Goto, I. M. Paul, K. D.

Makova, A. Nekrutenko, and J. Taylor, “Harnessing cloud

computing with Galaxy Cloud,” Nature Biotechnology, vol.

29, no. 11, pp. 972–974, Nov. 2011.

[8] S. V Angiuoli, M. Matalka, A. Gussman, K. Galens, M.

Vangala, D. R. Riley, C. Arze, J. R. White, O. White, and W.

F. Fricke, “CloVR: A virtual machine for automated and

portable sequence analysis from the desktop using cloud

computing,” BMC Bioinformatics, vol. 12. p. 356, 2011.

[9] K. Krampis, T. Booth, B. Chapman, B. Tiwari, M. Bicak, D.

Field, and K. Nelson, “Cloud BioLinux: pre-configured and

on-demand bioinformatics computing for the genomics

community,” BMC Bioinformatics, vol. 13. p. 42, 2012.

[10] I. Altintas, “Distributed Workflow-Driven Analysis of Large-

Scale Biological Data Using bioKepler,” in 2nd International

Workshop on Petascal Data Analytics: Challenges and

Opportunities (PDAC), 2011, pp. 41–42.

[11] D. Nurmi, R. Wolski, C. Grzegorczyk, G. Obertelli, S.

Soman, L. Youseff, and D. Zagorodnov, “The Eucalyptus

Open-Source Cloud-Computing System,” in 9th IEEE/ACM

International Symposium on Cluster Computing and the Grid,

2009, pp. 124–131.

[12] E. Afgan, D. Baker, A. Nekrutenko, and J. Taylor, “A

reference model for deploying applications in virtualized

environments,” Concurrency Computation Practice and

Experience, vol. 24, pp. 1349–1361, 2012.

[13] K. Keahey and T. Freeman, “Contextualization: Providing

one-click virtual clusters,” in 4th IEEE International

Conference on eScience, 2008, pp. 301–308.

[14] E. Afgan, B. Chapman, and J. Taylor, “CloudMan as a

platform for tool, data, and analysis distribution,” BMC

Bioinformatics, vol. 13, p. 315, 2012.

[15] D. Blankenberg, G. Von Kuster, E. Bouvier, D. Baker, E.

Afgan, N. Stoler, J. Taylor, and A. Nekrutenko,

“Dissemination of scientific software with Galaxy ToolShed,”

Genome biology, vol. 15, no. 2, p. 403, Jan. 2014.

[16] C. Sloggett, N. Goonasekera, and E. Afgan, “BioBlend:

automating pipeline analyses within Galaxy and CloudMan,”

Bioinformatics, vol. 29, no. 13, pp. 1685–6, Jul. 2013.

[17] S. Leo, L. Pireddu, G. Cuccuru, L. Lianas, N. Soranzo, E.

Afgan, and G. Zanetti, “BioBlend.objects: metacomputing

with Galaxy,” Bioinformatics, vol. 30, no. 19, pp. 2816–7,

Oct. 2014.

[18] D. Blankenberg, J. E. Johnson, J. Taylor, and A. Nekrutenko,

“Wrangling Galaxy’s reference data,” Bioinformatics, vol. 30,

no. 13, pp. 1917–9, Jul. 2014.

