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Abstract - Unlike newly developed web applications that can 

be designed from the ground up to utilize cloud APIs and 

run natively within cloud infrastructure, most complex 

bioinformatics pipelines that are in advanced states of 

development can only be encapsulated within VMs along 

with all their software and data dependencies. To take 

advantage of the scalability offered by the cloud, additional 

frameworks are required to create virtualized compute 

clusters and emulate the most common infrastructure found 

on institutional resources where most of the existing 

bioinformatics pipelines are generally run. In this paper we 

describe one such framework, its compatibility with 

multiple Clouds and present an automated process for 

deploying the entire system so it can be made 

easily available on any Cloud.  

I. INTRODUCTION 

The adoption of cloud computing technologies has 
provided an opportunity to effectively democratize the 
field of computational biology, meaning that individual 
researchers and labs can now have access to the resources 
that were previously only available to the large 
sequencing and bioinformatics centers [1]. However, this 
presents challenges of its own, such as the need to 
configure and utilize bioinformatics software for next-
generation sequencing, where significant expertise is 
required on UNIX based operating systems, programming 
languages, software compilation from source code, file 
systems, and large-scale data management [2]. For smaller 
laboratories this can become a significant obstacle, 
because in addition to coming up with the funds for 
building an informatics infrastructure with the capacity to 
handle large computations, they also need to hire trained 
bioinformaticians competent to install, configure and run 
sequence analysis software tools and manage the data. 
This can present a higher expense than that of acquiring 
the hardware. 

The cloud computing model has showcased its ability 
to transform how access to compute resources is realized 
and has delivered on the notion of Infrastructure-as-Code 
[3]. However, this model presents the user with low-level 
resources that still need to be procured, configured, and 
managed. In the context of bioinformatics, this means 
installing required tools and reference data and setting up 
a virtualized cluster environment. As data volumes 
increase, this also requires utilizing compute and storage 
resources in a scalable manner. To address this, we have 

been developing CloudMan [4] as a versatile solution for 
enabling and managing compute clusters in cloud 
environments via a simple GUI web interface or a 
programmable API. As a full-fledged deployment, 
CloudMan integrates with the Galaxy framework [5], [6] 
and provides a comprehensive workbench for biomedical 
data analysis on the Cloud [7]; it enables one to 
seamlessly acquire cloud resources, assemble those into a 
compute cluster, upload data, perform data analysis by 
chaining output of one tool as the input of another, 
visualize the data, and finally share it. This is the end-user 
view. Internally, CloudMan manages cloud resources, 
operating system services, and application-level services. 

As part of this article, we describe how we have 
extended CloudMan into an interoperable solution for 
multiple Clouds and built a framework for allowing 
anyone to deploy their own version. We describe the 
process for building the required cloud resources, how to 
launch an instance of the deployed components and how 
to configure CloudMan to manage a launched instance 
and correctly orchestrate any required runtime 
components. Once deployed, users will have a functional 
bioinformatics workbench and a dynamically scalable 
cluster for data analysis on a given cloud. 

II. BACKGROUND 

In recent years, cloud based bioinformatics data 
analysis systems such as Galaxy [7], CloVR [8], Cloud 
BioLinux [9] and bioKepler [10] were released, allowing 
smaller laboratories and institutions to perform large-scale 
data analysis with genomic datasets. All these platforms 
are available on the Amazon Elastic Compute (EC2) 
cloud, which provides data centers across the world, 
allowing any researcher worldwide to connect to the cloud 
end-point closest to their geographic boundaries. 

Researchers or institutions with access to computing 
resources at their home institution have the option to 
implement their own private Cloud platform and run 
Virtual Machine (VM) servers, using the open-source 
Eucalyptus [11] or OpenStack cloud middleware. 
OpenStack is the official Cloud platform bundled with the 
Ubuntu Linux operating system

1
and can be readily 

installed on clusters running other Linux distributions
2
, 

                                                             
1
 http://www.zdnet.com/article/ubuntu-syncs-up-with-

2
 http://docs.openstack.org/ 



and Eucalyptus is similar. Both of these Cloud platforms 
offer Application Programming Interfaces (APIs) 
compatible with Amazon’s EC2 service, and applications 
developed either on Eucalyptus or OpenStack work on the 
Amazon Cloud and vice-versa. Furthermore, users have 
the option to copy and execute VM server snapshots 
across installations of these Clouds as has been 
demonstrated with Cloud BioLinux.  

For users who do not own local compute resources, 
nor have funds available to lease computing time from a 
public Cloud provider, there is the possibility of using 
government-funded Cloud infrastructures, such as the US-
based Open Science Data Cloud

3
, the Australian NeCTAR 

Research Cloud
4
, or Helix-Nebula in the EU

5
. In addition, 

a number of academic computing centers in both the US 
and other countries have similar clusters with OpenStack 
installed

6
, to which scientists can request access.  

III. DEPLOYING AND PROVISIONING VIRTUAL 

ENVIRONMENTS 

Despite the general availability of cloud computing 
resources around the world, due to the complexity of 
setting up a functional bioinformatics platform for data 
analysis, we have (1) expanded the capabilities of 
CloudMan to be interoperable with multiple cloud 
providers; (2) devised an automated method for deploying 
a complete system on compatible clouds; and (3) 
developed a launcher application allowing end-users to 
provision instances of the platform when and where 
needed. The overall concept is depicted in Figure 1 and 
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each of these contributions is described in the following 
sections. 

A. A Multi-cloud Cluster Manager 

Architecturally, CloudMan is a standalone application 
written in Python that orchestrates cloud components 
(virtualized compute resources and software programs) to 
deliver persistent and functional user-level services (see 
[12] for the implementation details). To operate, 
CloudMan uses a number of cloud-level features and 
assembles those into a functional platform for performing 
data analysis [4]. Internally, CloudMan abstracts away the 
interaction with multiple cloud providers via a common 
cloud interface (cloud_interface). All the internal 
methods utilize the given interface providing uniformity 
throughout the code while supporting multiple cloud 
technologies. Compatibility with multiple clouds is 
achieved via a custom implementation of the cloud 
interface for each of the supported clouds (AWS, 
OpenStack and Eucalyptus). Adding support for future 
clouds is a matter of implementing the methods defined in 
the cloud_interface, with the option to inherit from the 
default AWS implementation and, again, identifying and 
implementing only the differences. 

Because a running instance of the CloudMan platform 
represents a composition of multiple cloud services, in 
order to deploy the platform, it is necessary for the cloud 
middleware to provide the required features, as follows: 

• Customizable machine image: this is the VM itself 
containing the operating system (Ubuntu) and 
required system level packages for applications 
such as Nginx, Slurm, RabbitMQ. 

• Instance user data: this enables runtime 
contextualization [13], which is what makes it 

 

Figure 1.  The effort described in this paper highlights the features of CloudMan as a platform for building and provisioning bioinformatics 

workbenches across multiple Clouds. With the multi-cloud compatibility of CloudMan (Section 3.A), (1) a deployer would use the provided 

automation methods to build and link the required cloud resources, tailored to the needs of the given research community (Section 3.B). Then, (2) a 

group leader, system administrator or even a domain researcher uses a launcher app to provision any number of instances of the workbench and 
possibly further customize those with custom data or tools (Section 3.C). Finally, (3) domain researchers use the workbench in their daily routine. 



possible to have different and independent 
instantiations of the same platform. Sample data 
included as part of the instance data includes the 
API keys that CloudMan should use to connect to 
the cloud provider. 

• Security groups: a virtual firewall offered by the 
cloud provider that permits selective traffic to 
one’s compute instances based on user-defined 
access rules. CloudMan uses HTTP, SSH, FTP 
and several custom ports to enable access to the 
running services. 

• Persistent POSIX data storage: this is where the 
user-uploaded and analyzed data is stored, as well 
as installed tools, databases, and tool 
configurations; it is leveraged to provide 
longevity beyond the uptime of an instance. 
Ideally, this storage is provided in the format of 
block storage devices of arbitrary size (i.e., data 
volumes) but other storage devices can be used 
instead, including mountable external file 
systems, such as NFS or Gluster, or the ephemeral 
storage on individual instances.  

• Block storage snapshots: given that a significant 
amount of bioinformatics data is read-only 
reference genome data, the CloudMan platform 
maximizes data reuse by utilizing a single source 
of this type of data for multiple deployed 
instances of the platform. Technically, this is 
delivered via point-in-time block storage 
snapshots, which are converted into data volumes 
at runtime. To realize the reuse aspect of this data, 
the snapshots or archives need to be sharable. 
Alternatively, it is possible to use "tarballs" of file 
systems, which are archived in an object store and 
extracted at runtime onto an instance’s ephemeral 
storage.  

• Object store: persistent configuration data 
describing a given instance of the platform is 
stored in a globally accessible object store and it 
is used to recompose the CloudMan platform after 
it had been shut down. Information about running 
platform services (i.e., applications), utilized 
resources (e.g., volume, snapshot, machine 
image), and the CloudMan runtime code are 
stored here. 

• Per object ACL controls in the object store: in 
order to enable instance sharing [14] with 
individual users, it should be possible to set 
Access Control List (ACL) permissions on each 
individual object inside the object store. Note that 
this is a requirement for the instance sharing 
functionality only.  

• Resource metadata: popularly known as tags, 
assigning metadata to each of the utilized cloud 
resources helps identify all the components 
making up the complete platform. It also provides 
a fallback in case the platform needs to be 
recreated by hand following an unexpected 
corruption. 

Given the feature-set of today’s clouds, the above list 
is considered quite minimal and we strive towards 
minimizing it further. In the meantime, the required 
resources are available from a variety of cloud 
providers/middleware as bare-bones resources that behave 
consistently across those, making it possible to create the 
cross-cloud platform being described in this paper. This 
approach is in contrast to using custom (or high-level) 
services offered by a specific cloud provider and thus 
becoming locked-in to the given cloud or cloud features. 

B. Automating Component Deployment 

The previous section describes the multi-cloud support 
provided by CloudMan as a reusable framework and 
outlines the set of requirements a target Cloud must 
posses. In this section, we present a method for deploying 
the complete CloudMan platform. By deploying, we mean 
building the necessary components and making them 
available on the target cloud. These components will be 
joined at runtime (see next section) to deliver a functional, 
user-facing platform.  

The process of deploying the required components has 
been automated using the Ansible automation framework. 
Ansible is a configuration management and provisioning 
tool; it uses files in YAML format to allow users to define 
tasks (e.g., apt-get update) and it then executes those 
tasks on target resources in an idempotent fashion. It uses 
SSH to communicate with target resources, hence 
imposing minimal requirements on setup. Conceptually, 
Ansible allows one to define reusable roles, which are 
composed of multiple tasks. It further allows multiple 
roles to be assembled into more comprehensive playbooks 
that can mix and match functionality offered by individual 
roles.  

For the purposes of deploying a bioinformatics 
workbench backed by the CloudMan platform, we have 
developed a set of Ansible roles and assembled those into 
a playbook

7
. As stated above and described in detail in 

[12], the overall platform requires multiple components: 
the base machine image, an instance of the tools file 
system, and an instance of a file system containing 
indexed reference genomes. The playbook offers the 
capacity to build these components in an automated 
fashion. To start, it is necessary to build the machine 
image. This step leverages Packer

8
, which is an additional 

layer of automation on top of Ansible. It handles 
provisioning of a VM on the target cloud, invoking the set 
of Ansible roles for building the machine image, creating 
the machine image, and cleaning up. Because Packer can 
run in parallel on multiple targets, it is possible to build 
the machine image with a single command (e.g., packer 
build cloudman.json) on multiple clouds at once. The 
built machine image will contain the required system 
packages and libraries, FTP server, Nginx proxy server, 
Slurm cluster manager and required configurations (e.g., 
users, environment settings). 

Next, it is necessary to build the core file system, 
called galaxyFS. This file system holds all the tools, 
databases, the Galaxy application, and configuration 
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options that will be available via the workbench. Building 
galaxyFS is realized by launching an instance of the 
machine image built in the previous step, adding a file 
system of desired size (e.g., 10GB) via CloudMan’s 
Admin page (note that CloudMan will be available 
because we are now using the image built in the previous 
step), and running the available Ansible roles. The roles 
will configure and initialize a PostgreSQL database as 
well as download and configure the Galaxy application 
with production settings. Installing the desired tools is 
realized via the ToolShed [15]. This step has been 
automated via a custom Python script that leverages the 
BioBlend API [16], [17] and installs more than a hundred 
tools at once. The list of installed tools is provided in a 
configuration file and can hence be easily modified. Once 
the process has been completed, it is necessary to create a 
snapshot of the resulting file system, which can be 
achieved via CloudMan’s Admin page.  

Similar to building the galaxyFS, it is necessary to 
build indicesFS - a file system containing desired 
reference genomes. The process is similar in that a new 
file system of adequate size needs to be added. Adding the 
reference genomes is performed via Galaxy Data 
Managers [18], which integrate with Galaxy and allow 
one to simply choose which genomes to include. Once the 
process has been completed, it is also necessary to create a 
snapshot of the resulting file system. Finally, it may be 
desirable to make the created snapshots public (or share 
them with select users) so others can launch instances of 
the deployed components (see next section). Also note 
that instead of creating volume snapshots, it is possible to 
create downloadable archives or shared file systems but, 
for brevity, we focus on volume snapshots alone. 

C. Provisioning 

Once the required components have been built, they 
need to be assembled into a provisioned instance of the 
platform. Instances can be provisioned by projects or labs 

to offer an ‘always-on’ ready-to-use workbench or by 
individual users on an as-needed basis (see Section IV). 
To make the process accessible, we have further 
automated the provisioning process via launcher web 
applications.  

The build process described in the previous section 
produces a machine image and two file system snapshots. 
The provisioning process launches a VM instance based 
on the image, which starts CloudMan, and CloudMan then 
creates volumes based on the previously created snapshots 
to make functional file systems (along with setting up a 
virtual cluster and starting several service processes). 
Before an instance can be provisioned, it is necessary to 
compose the instance user data that contains access details 
for the given Cloud (e.g., region endpoints, ports) and 
information about the cluster (e.g., cluster name, access 
credentials). Once an instance of the image is launched, 
CloudMan will automatically start and continue the 
workbench contextualization process. To obtain the 
snapshot ID’s, CloudMan refers to the default_bucket 
that is passed in with user data. This is an accessible 
object store container where a file (by default 
snaps.yaml) is stored and contains the details about the 
snapshots and corresponding file systems (see Table I). 
CloudMan will read the contents of the given file and 
proceed with setting up the system.  

The above process can be somewhat detail-oriented 
and technical in nature. To simplify it, we have introduced 
a notion of a launcher web application that will handle the 
provisioning process automatically. The launcher app 
offers users a web form asking for cloud access 
credentials, a name for the instance, and a choice of VM 
type. The app then composes and formats the required 
information, instantiates an instance of the base machine 
image and informs the user when the launch process has 
completed. It also allows a previously created cluster to be 
readily recreated. There are two launcher applications 
available: one within the Galaxy application itself 
(CloudLaunch) and a standalone one (BioCloudCentral). 
CloudLaunch is automatically available on any Galaxy 
instance (at /cloudlaunch URI) but requires a local 
instance of Galaxy (a public one is available at 
https://usegalaxy.org/cloudlaunch). Alternatively, 

TABLE I.  A SAMPLE FROM SNAPS.YAML CONFIGURATION FILE. THE 

FILE STRUCTURE ALLOWS MULTIPLE CLOUDS, MULTIPLE REGIONS, 
AND MULTIPLE DEPLOYMENTS WITHIN A REGION TO BE SPECIFIED 

THAT CAN BE READ BY THE LAUNCHER APPS AND CLOUDMAN TO 

PROPERLY ASSEMBLE AN INSTANCE OF THE PLATFORM. 

version: 1 

clouds: 

 - name: amazon 

   regions: 

   - deployments: 

     - name: GalaxyCloud 

       filesystems: 

       - name: galaxy 

         roles: galaxyTools,galaxyData 

         snap_id: snap-adad90fc 

       - name: galaxyIndices 

         roles: galaxyIndices 

         snap_id: snap-5b030634 

       default_mi: ami-118bfc78 

       bucket: cloudman 

     name: us-east-1 

- name: nectar 

<include details about other clouds/regions> 

 

Figure 2.  The process of deploying an instance of the platform, also 

showing all the required components. 



BioCloudCentral can be installed on a dedicated host and 
used independently of Galaxy (a public instance of this 
application is available at https://biocloudcentral.org/).  

Figure 2 summarizes the described effort: after the 
required set of components has been built and registered 
in snaps.yaml, the launcher app is used to provision an 
instance of the platform. After the contextualization steps 
have completed, the user can start using the platform. 

IV. DEMONSTRATION 

The effort described in this paper allows anyone to 
build their own deployment of the CloudMan platform 
and the associated bioinformatics workbench. It further 
allows users to launch their own instances of the platform 
on the clouds on which it has been deployed. Currently, in 
addition to the long-standing deployment on AWS, the 
platform has been deployed on the Australian research 
cloud, NeCTAR; these represent two flagship 
deployments of the platform that are supported by the 
authors. Other deployments also exist but have been done 
by independent projects at their home institutions. Figure 
3 captures the number of times the platform has been 
provisioned on the AWS and NeCTAR clouds over the 
past three years. The figure indicates that the NeCTAR 
cloud, despite the fact that it is available only to 
Australians, has been seeing approximately two to three 
times the number of instantiations as the world-wide 
deployment on AWS. We attribute this to the fact that the 
NeCTAR cloud is free of cost and that the Australian 
community has largely moved ‘into’ the cloud, especially 
for training and teaching purposes. 

In addition to the count of provisioned platforms, the 
authors have been maintaining an always-on instance of 
the CloudMan platform on the NeCTAR cloud as part of 
the Genomics Virtual Laboratory (GVL) project

9
. This 

instance of the platform offers an instance of the Galaxy 
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application that has been tailored for bioinformaticians 
training. During the course of the GVL project, a number 
of tutorials has been developed that demonstrate 
bioinformatics data analysis activities, such as variant 
calling or RNA-Seq analyses

10
. The instance, called 

galaxy-tut (available at http://galaxy-tut.genome.edu.au/), 
is where the tutorial data and tools are hosted, representing 
a fertile playground for training sessions. Besides being 
used during live training sessions, the instance is always 
available for anyone to follow the tutorials at his or her 
own pace. To accommodate these scenarios, the compute 
infrastructure behind the galaxy-tut user interface needs to 
scale with demand: as a lab full of students initiates a 
mapping job, the resource requirements rapidly grow. At 
the end of the compute-intensive portion of a tutorial, or 
during non-teaching periods, the resource requirements 
are much lower. The cloud model fits this scenario 
perfectly and the CloudMan platform is entrusted with 
keeping up with the cycle of requesting, configuring, 
managing, and releasing the necessary resources.  

The galaxy-tut instance was launched as a default 
CloudMan instance on the NeCTAR research cloud and 
then manually customized to include all the data and 
Galaxy histories required for the tutorials. The master 
instance of the CloudMan cluster is running on an extra-
large instance type (8 virtualized CPU cores, 16GB 
RAM). During training sessions, running of the jobs on 
the master instance is disabled via CloudMan’s Admin UI 
and additional cluster nodes are explicitly launched. In 
addition, CloudMan’s auto-scaling is left on to 
accommodate possible spikes in usage. The instance has 
nearly 500 registered users, stores 1TB of user data, and 
runs approximately 2000 jobs per month. 

We have also deployed and run CloudMan and Galaxy 
on an experimental Eucalyptus cloud installation at the J. 
Craig Venter Institute

11
. The installation comprised of four 
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Figure 3.  The process of deploying an instance of the platform, also 

showing all the required components. 

 

Figure 3.  The process of launches per month of the CloudMan platform on two clouds, AWS and NeCTAR. 



identical physical compute servers (16 core, 32GB 
memory, 1TB disk each). One of these servers was used 
as the cloud’s head node to run Cloud Controller (CLC) 
service of Eucalyptus, and the remaining nodes running 
the passive Node Controllers (NCs) for worker VMs. The 
CloudMan framework has enabled us to bootstrap on-
demand virtualized compute clusters with an easily 
accessible Galaxy interface on our private cloud. By 
simply starting with a pre-configured VM dropped on the 
CLC node, and configuring the Galaxy cluster endpoint to 
be handled by CloudMan, we were able to instantiate 
multiple transient VMs for parallel job execution across 
the Eucalyptus cloud nodes with CloudMan performing 
the initialization, management and termination of the 
VMs. 

V. CONCLUSIONS 

Dealing with the infrastructure and system level 
operations, such as acquiring cloud instances or managing 
operating system level services, requires a significant 
investment in time and expertise. Yet, for modern day 
bioinformatics it is an essential requirement. In our 
previous work, we have developed a system that provides 
a ready-to-use bioinformatics workbench with dozens of 
tools and gigabytes of reference genome data on the AWS 
cloud. This paper describes the effort of making the 
overall system underlying the workbench compatible with 
multiple Clouds and an automated process for deploying 
it. This makes it possible for anyone to deploy their own 
instance of the platform on a private cloud or under their 
own account on a public account. Each deployed instance 
can have a custom set of tools and reference genome data 
available, which are tailored to the specific needs of a 
group or an institution. Once deployed, others can launch 
the given instance of the workbench via provided launcher 
web applications.  
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