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Abstract—Cloud computing is attracting increasing attention 

as a means of providing users with fast provisioning of 

computational and storage resources, elastic scaling, and pay-

as-you-go pricing. The integration of scientific workflows and 

Cloud computing has the potential to significantly improve 

resource utilization, processing speed, and user experience. 

This paper proposes a novel approach for deploying 

bioinformatics workflows in Cloud environments using Galaxy, 

a platform for scientific workflows, and Globus Provision, a 

tool for deploying distributed computing clusters on Amazon 

EC2. Collectively this combination of tools provides an easy to 

use, high performance and scalable workflow environment that 

addresses the needs of data-intensive applications through 

dynamic cluster configuration, automatic user-defined node 

provisioning, high speed data transfer, and automated 

deployment and configuration of domain-specific software. To 

demonstrate how this approach can be used in practice we 

present a domain-specific workflow use case and performance 

evaluation. 

Keywords-Scientific workflow; Cloud computing; Galaxy; 

Globus provision 

I.  INTRODUCTION 

Scientific workflows represent an important paradigm for 
facilitating computational research. In a scientific workflow, 
developers create applications by composing multiple 
executable tasks (isolated “units” of computation or data 
manipulation) that are executed in a specified order. 
Traditionally, scientific workflows are executed locally, or 
on High Performance Computing (HPC) clusters, Grids [1, 2] 
and service-oriented architectures [3]. However, the task of 

designing, creating and deploying the underlying workflow 
infrastructure to support large-scale computation is non-
trivial. Moreover, administrators face difficulties configuring 
and installing tool dependencies for the given domain, 
reserving appropriate resources to cater for fluctuating 
resource requirements, and designing scalable solutions that 
can handle the increasing size of scientific data.  

Cloud computing offers many features that are attractive 
to scientific workflow developers [4-7]. For example, 
Infrastructure-as-a-Server (IaaS) Cloud platforms, such as 
Amazon EC2 [8], can provision the necessary resources to 
support a workflow system quickly (within a few minutes), 
provide as much computation and storage capacity as needed 
in a pay-as-you-go manner, be configured with appropriate 
software and applications, and elastically scale capacity as 
service demands change. However there remains a 
significant usability gap between the low-level interfaces 
provided by Cloud resources and the various mechanisms 
required by developers and users of elastic scientific 
workflows. For example, scientific workflows require the 
deployment and configuration of multiple components 
simultaneously (e.g., distributed file systems, virtual clusters, 
and a workflow portal); workflows are typically composed 
of many diverse executables, each with dependencies for 
specific packages or software that can be time consuming to 
install and configure; the resources used by scientific 
workflows may vary during run time, thus demanding an 
elastic reconfiguration method to alter computational clusters 
dynamically; and data sizes in many scientific domains 
require high-performance and reliable data transfer to move 
data between storage repositories and processing resources.  



We present here an approach to realizing a high 
performance and scalable scientific workflow environment 
using Cloud resources. The approach is based on Galaxy [9], 
a web-based platform for scientific workflow 
implementation, execution and sharing. To meet the need for 
large-scale data transfer we have extended Galaxy to use 
Globus Online [10] -- a high performance, secure, and 
reliable data transfer service. This service addresses the 
challenges in moving or synchronizing large quantities of 
data across administrative domains. While Galaxy already 
provides tools for uploading and downloading files, the 
speed and reliability of these tools is not sufficient when 
transferring large datasets, as are commonly seen in 
biomedical research. As we demonstrate below, Globus tools 
can achieve performance improvements up to an order of 
magnitude. 

Our approach builds on a tool called Globus Provision 
(GP) to automatically deploy and configure user-defined 
workflow environments. This technology supports 
automated deployment of all prerequisite tools and software 
packages required for Galaxy along with additional domain 
specific tools, thereby increasing GP’s value in a high 
performance or domain-specific Cloud deployment. By 
exploiting the GP model, the deployed workflow 
environment can be modified to respond to workload 
changes by elastically adding or removing nodes from the 
cluster and changing instance “sizes” to balance cost and 
performance. In addition, software dependencies can be 
reconfigured at run-time to rapidly add or remove software 
from cluster nodes.  

To demonstrate the flexibility of our approach we have 
extended this framework to meet the requirements of a 
specific domain, in this case cardiovascular research, by 
adding a set of domain-specific R based tools [11] to the 
deployment. Based on this toolset, we present a workflow 
use case in cardiovascular research, and evaluate its 
performance with respect to time and cost. 

The remainder of this paper is structured as follows, 
Section 2 briefly introduces Galaxy; Section 3 provides an 
overview of our approach to deploy and configure Galaxy 
instances and elastically scale resources; Section 4 presents 
integration of Globus Transfer and CRData as tools in 
Galaxy. Section 5 presents a bioinformatics workflow use 
case and performance evaluation. Finally we review related 
work and present conclusions in Sections 6 and 7. 

II. GALAXY 

Galaxy [9] is a scientific workflow management system 
developed by Pennsylvania State University and Emory 
University. Galaxy provides an open, web-based platform 
that is widely used by biomedical scientists for data-intensive 
computational analyses and data integration. The main 
features of Galaxy are as follows. 

1) Web-based platform for computational analyses 
Galaxy provides a simple Web interface to a set of 

biomedical tools, enabling researchers to conduct their own 
custom analysis and manipulation without software 
installation or programming. Users can import datasets into 
their workspaces from established data warehouses and/or 

upload their own datasets. Interfaces to computational tools 
are automatically generated from abstract descriptions to 
ensure a consistent look and feel [9]. With Galaxy’s 
workflow editor, various tools can be configured and 
composed to complete an analysis. Galaxy automatically 
records history and provenance information for each tool 
executed via a workflow. 

2) Workflow publishing and data sharing 
Galaxy supports reproducibility by capturing sufficient 

information about every step in a computational analysis, so 
that the analysis can be repeated in the future [9]. It tracks, in 
particular, all input, intermediate, and final datasets, as well 
as the parameters and the execution order of each step of the 
analysis [12]. Galaxy’s sharing model, public repositories, 
and display framework provide users with the means to share 
datasets, histories, and workflows via web links, either 
publicly or privately. Galaxy users can annotate a history or 
workflow in the analysis workspace and then share them in a 
Page conveniently. A Galaxy Page is a mix of text, graphs 
and embedded Galaxy items from analyses (including 
datasets, histories and workflows), that allows a reader to 
easily view, reproduce, or extend the analyses [9]. Galaxy 
supports the whole lifecycle of research data, from creation, 
annotation, to publication and reuse. 

3) Extensibility 
Users can deploy their own Galaxy servers and 

customize it to meet particular requirements. Galaxy’s 
flexible model makes the extension and integration of tools 
and data trivial. A tool can be any piece of software for 
which a command line invocation can be constructed. To add 
a new tool to Galaxy, a developer writes a configuration file 
that describes how to run the tool, including detailed 
specification of input and output parameters. This 
specification allows the Galaxy framework to work with the 
tool abstractly, for example, by automatically generating web 
interfaces [9].  

III. GLOBUS PROVISION FOR GALAXY 

Setting up a production instance of Galaxy is a non-
trivial task that involves a number of manual installation and 
configuration steps for both the platform and any dependent 
software packages—steps that can be both error-prone and 
time consuming. These steps require that end-user 
researchers either become IT experts or rely upon the 
potentially sparse IT resources provided by their institutions. 
Either approach tends to result in sub-optimal use of 
researcher time and expertise. 

Moreover, resource demands frequently fluctuate 
between and during execution of scientific workflows. It is 
often inefficient, in terms of resource usage and cost, to pre-
provision infrastructure for peak usage and it is difficult to 
elastically scale (in near real-time) to the demands of a 
workflow.  

To address these problems, we have designed a Globus 
Provision-based approach to automate the process of 
deploying and scaling Galaxy on Amazon EC2. This section 
first introduces Globus Provision, and then presents the 



methods by which it is used to deploy and elastically scale 
Galaxy deployments on Amazon EC2. 

A. Introduction of Globus Provision 

Globus Provision [13] is a tool for automatically 
deploying  a highly configurable and scalable distributed 
computing system that includes remote data access, job 
submission, and security. The system can be deployed with 
any subset of the tools it supports such as GridFTP [14] for 
high performance transfer, MyProxy [15] for user-based 
access management, and Condor [16] for job submission. As 
part of this configuration, GP also generates user accounts 
and certificates to support secure access, sets up a Network 
File System (NFS) and Network Information System (NIS) 
to provide a robust shared file system across nodes, and 
dynamically adds and removes software, hosts and user 
accounts. 

Globus Provision relies on Chef [17] to configure hosts 
for a given topology. The topology is the specification of 
what will be deployed (e.g. a GridFTP server, a specific set 
of users, and a Condor cluster.). In Chef, the actions required 
to set up a specific piece of software are defined in a Ruby 
script called a recipe. Similar recipes are grouped into a 
cookbook which includes associated configuration templates 
and default values. GP defines several Chef Cookbooks to 
handle basic host setup and configuration of each node. 

Figure 1 describes the main steps for using Globus 
Provision.  
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Figure 1.  The main steps for using Globus Provision. (The blocks with 

solid lines are necessary steps, while the ones with dashed lines are 

optional steps (executed if needed)) 

1. Pre-requirement: Before starting with GP, an Amazon 
AWS account is needed. More specifically, the user 
should have a secret access key and SSH (Secure Shell) 
keypair for his EC2 account. 

2. Create/Modify recipe: Users can modify existing recipes 
or add new recipes to install and configure specific 
software and packages, run commands and conduct other 
operations that should be performed on each host. 

3. Define a topology: The topology file defines the user’s 
requirements of the system. For example, whether it 
should have a shared file system, what users should be 
created, what software should be installed on each 
machine, etc. 

4. Create/Start a GP instance: Based on the topology file, 
Globus Provision will create and start one or more 
instances on EC2 which together we refer to as a GP 
instance.  

5. SSH to hosts if needed: When the GP instance is running, 
users can connect to any of its hosts via SSH. 

6. Stop/Terminate the GP instance: The GP instance can be 
stopped while not in use (to avoid paying for idle 
resources), and resumed at a later time. Terminated 
instances cannot be resumed. All the hosts are shut down 
and all their resources are released after termination. 

7. Modify topology: Once an instance is running, it is 
possible to modify its topology, e.g., by adding and 
removing hosts/users/domains, and adding software 
requirements to hosts. Users can edit the instance’s 
topology and tell GP to modify the running instance to 
match the updated topology.  

8. Create/Update GP AMI: Although GP already provides a 
public Amazon Machine Image (AMI), users can also 
create their own AMI (e.g., to use an AMI that is 
preloaded with required software packages such as 
specific bioinformatics tools) to speed up deployment.  

B. Globus Provision for Galaxy 

Globus Provision provides a generic architecture for 
automatically configuring distributed Cloud-based 
infrastructure and includes many valuable features for a 
Galaxy deployment (e.g., Condor clusters for distributed 
execution). For this reason we have chosen to extend GP to 
support configuration and deployment of a Galaxy instance 
with integrated Globus Transfer capabilities and user-defined 
domain-specific tools. In doing so, we have created an 
extensible framework that supports the deployment of 
custom Galaxy tools such as the CRData tools which are 
commonly used in cardiovascular research (Section 4.2). The 
combination of default tools and Globus Transfer tools 
included in the default Galaxy package simplifies the ability 
for users in different domains to create a user-specific 
Galaxy instance suitable for supporting data-intensive 
applications. 

Figure 2 shows the architecture of our deployed system. 
There are three important nodes: 1) The Galaxy node 
provides Galaxy applications and user interface; 2) the 
GridFTP node operates as a Globus endpoint and allows 
Globus Transfer between the Galaxy system and other 
Globus endpoints; 3) the NFS node supplies a shared file 
system for all the other nodes in the system.  In addition, 
when a Condor scheduler is configured, the Galaxy node 
also operates as a Condor head node that manages a set of 
Condor worker nodes in a dynamic Condor pool. In this 
model Galaxy jobs are transparently assigned to Condor 
worker nodes for parallel execution. 
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Figure 2.  System architecture 

The basis of the Galaxy GP model is a collection of new 
recipes for deploying Galaxy, its components, and the 
Globus Transfer additions.  

One recipe (“galaxy-globus-common.rb”) is responsible 
for installing the common requirements for Galaxy. (More 
specifically, for a forked version of Galaxy that includes the 
integrated Globus Transfer capabilities.) The recipe creates a 
galaxy user, downloads Globus Transfer tools as well as 
Galaxy from bitbucket.org, and copies default configuration 
files and set-up scripts for Galaxy. If Galaxy is installed on a 
domain with NFS/NIS, this recipe is run on the NFS/NIS 
server (“simple-server”), if not it is also run on the Galaxy 
server. The other core recipe (“galaxy-globus.rb”), which is 
run on the Galaxy server (“simple-galaxy-condor”), installs 
the Globus fork of Galaxy and Globus Transfer API, sets up 
the Galaxy database, executes set-up scripts and restarts 
Galaxy. Both of these recipes have been added to the 
“run_list” of the appropriate hosts when deploying Galaxy 
using GP.  

The recipes created are open source and users can modify 
and create their own recipes that will deploy customized 
Galaxy instances.  

C. Dynamic Topology Reconfiguration 

One unique aspect of Globus Provision is its ability to 
dynamically alter, during runtime, the Cloud infrastructure. 
The Globus Provision Galaxy extensions take advantage of 
this functionality to balance performance and cost such that 
users pay only for the resources they use, while also being 
able to scale up to meet resource requirements. By altering 
the topology file and re-executing GP, users are able to add 
and remove instances from the Galaxy Condor pool within 
minutes. Unlike similar tools (e.g., CloudMan [18]), GP also 
supports the ability to change the Amazon EC2 instance type 
used in the deployment; thus, the user can easily customize a 
deployment to meet real-time requirements. For example, if 
workflow usage is low, micro or small instances can be used, 
while if memory requirements of a workflow increase, the 
running instances can be upgraded to large or extra-large 

instances. In addition, when the workflow platform is not 
being used, it can be suspended and restarted when required, 
thereby reducing the overhead of running an unused or 
sparsely used platform. 

D. Using Globus Provision to deploy Galaxy 

In order to deploy a Galaxy instance with Globus 
Transfer tools using GP, the user must create a topology file 
(galaxy.conf) describing the configuration (see Figure 3). 
The topology file defines the user’s requirements with 
respect to four aspects: general, domain-simple, ec2, and 
globusonline. Briefly the options shown in Figure 3 are: 

 

.  

Figure 3.  The Globus Provision topology file “galaxy.conf”. 

 “domain” specifies a single domain called simple. A 
topology can be divided into multiple domains, each with 
its own set of users, Globus services, etc. 

 “users” defines the list of user names that will be added 
to the list of users on the Galaxy cluster.  

 “cluster-nodes” specifies the initial number of worker 
nodes to be deployed.  

 “go-endpoint” defines the name of the endpoint that will 
be created for this cluster. The created endpoint will be 
shown in the Globus Online Transfer interface for data 
transfer to and from the Galaxy instance. 

 “keypair” and “keyfile” are the user’s EC2 SSH keypair.  

 “ami” is the base Amazon AMI that GP will use to create 
each host in the domain. Although any recent or custom 
AMI can be used, GP provides an AMI that has most of 
the necessary software pre-installed in it which 
considerably decreases the time taken to deploy an 
instance. 

 “instance-type” specifies the EC2 instance types used. 
We have found that t1.micro is suitable for testing, 
c1.medium is good for demos, m1.large is used for high 
performance instances. 

 “ssh-key” is the user’s key which can be used to access 
Globus Transfer for high performance file transfer. 
The parameters “gridftp”, “condor” and “galaxy” define 

the required standard GP packages that will be set up in the 
instance. Through the topology file, the user’s requirements 

[general] 
domains: simple 

[domain-simple] 
users: user1 user2 
gridftp: yes 
condor: yes 
cluster-nodes: 2 
galaxy: yes 
go-endpoint: cvrg#galaxy 

[ec2] 
keypair: gp-key 
keyfile: ~/.ec2/gp-key.pem 
ami: ami-b12ee0d8 
instance-type: t1.micro 

[globusonline] 
    ssh-key: ~/.ssh/id_rsa 



are translated to GP, including which servers need to be 
deployed, how many cluster nodes will be created, etc. When 
the GP instance is started, Galaxy with Globus Transfer can 
be accessed via the URL of the “simple-galaxy-condor” host. 
A Globus endpoint, with the name specified in the topology 
file, is also created and is accessible through either Galaxy or 
Globus Online. 

IV. GALAXY TOOL INTEGRATION 

In this section we present the development and 
integration of two different tools, Globus Transfer and 
CRData, into the Galaxy framework. The Globus Transfer 
tools are designed to optimize data transfer in Galaxy, while 
the CRData tools represent a custom tool deployment that 
provides a set of statistical tools for use by biomedical 
researchers. These two toolsets highlight the flexibility of the 
GP-based approach for deploying customized Galaxy 
environments.  

A. Globus Transfer tools 

Although Galaxy provides tools for uploading files via 
FTP and HTTP, the tools are often unreliable and inefficient 
when transferring large amounts of data, as is often the case 
in next generation sequencing. Moreover, files larger than 
2GB cannot be uploaded to Galaxy directly from a user’s 
computer. Consequently, we have extended Galaxy by 
adding Globus Transfer tools to provide a high performance, 
secure and reliable way of transferring large quantities of 
data in and out of Galaxy. The Globus Transfer integration in 
Galaxy is shown in Figure 4. 

 
Figure 4.  Globus Transfer toolset in Galaxy (this figure shows “GO 

Transfer” tool). 

Globus Online Transfer (Globus Transfer) [19] is a 
hosted service that provides powerful Grid transfer 
capabilities to automate the task of moving files between 
sites, or “endpoints”. Globus Transfer addresses the 
challenges in moving or synchronizing large quantities of 
data from different administrative domains in a secure, 
reliable, efficient and high performance way, without 
installing any software [10, 20]. Globus Transfer is 
responsible for transferring files, monitoring the transfer, 
retrying failures, auto-tuning performance and recovering 
from faults automatically, reporting status, and notifying 
users the completion of jobs via Email [19].  

Globus Transfer moves files between Globus Endpoints 
(GridFTP [14] servers) using the GridFTP protocol. It also 
supports third party transfers, in which the selected endpoints 
are not collocated with the requesting user. Many resource 
providers include pre-configured Globus Endpoints for their 
user communities, while other data providers expose public 
Globus Endpoints as a way of easily sharing data with users. 
Users can also configure their own endpoints by installing 
Globus Connect [21] on their resources (such as a campus 
server, desktop computer or laptop). This allows users to 
access the machine as a Globus Endpoint, and transfer data 
to other endpoints.  

By developing Globus Transfer tools for Galaxy we have 
incorporated the main benefits of Globus Online in Galaxy 
as well as providing access to the large network of existing 
Globus-enabled data sources. Through this integration 
Galaxy users are able to transfer files between existing data 
sources, their own resources and the Galaxy server securely, 
efficiently and quickly.  

The Globus Transfer toolset includes three tools: 1) third 
party transfers between any Globus endpoints (“GO 
Transfer”), 2) upload to Galaxy from any Globus endpoint 
(“Get Data via Globus Online”) and 3) download from 
Galaxy to any Globus endpoint (“Send Data via Globus 
Online”). Each of these tools has been added as a native 
Galaxy tool with an associated user interface to specify 
properties of the transfer.  

For example, using the “GO Transfer” tool (see Figure 4), 
a file stored at a “Source endpoint” can be transferred to a 
“Destination endpoint” and the file is manifested as a Galaxy 
dataset in the history panel available for further analysis. If a 
“Deadline” for transfer completion is specified, the job will 
be terminated if it is not completed within the specified time 
period and Galaxy will indicate an error in its history panel. 
During execution, Galaxy invokes the Globus Transfer 
REST API to create and monitor the transfer, this 
information is used to update the status of the job in the 
Galaxy history panel. The user also receives a notification 
via Email when the transfer job is finished. Similarly, using 
the “Get data via Globus Online” tool, the “Destination 
endpoint” is the Galaxy server itself, and using the “Send 
data via Globus Online” tool, the “Source endpoint” is the 
Galaxy server.  

Before using the Globus Transfer Galaxy tools, users 
need to create a Globus Online account 
(https://www.globusonline.org) and register an account in 
Galaxy with the same username. The user must also 
configure an X.509 certificate on the Galaxy server and in 
Globus Online that allows the Galaxy server to submit 
transfer requests on behalf of the user while guaranteeing 
security of the transfer. This is done by copying the 
generated X.509 certificate from the Galaxy Server and 
adding it to the user’s profile through the Globus Online web 
site. Globus Online manages, on behalf of users, the security 
credentials required to authenticate against different 
endpoints, when submitting a transfer Globus Transfer will 
utilize the appropriate credential to “activate” the selected 
endpoint. Finally the Galaxy server must also include a 
registered Globus Endpoint, this is configured in the Globus 

https://www.globusonline.org/


Provision for Galaxy recipes as described in the previous 
section.  

B. CRData tools 

CRData.org is a web-based computational tool designed 
to execute BioConductor scripts, written in R, on cloud 
resources. The platform gives users an intuitive interface for 
running R and Bioconductor, and is commonly used in many 
research domains. Although Galaxy offers many analysis 
tools for Next Generation Sequencing, it lacks many tools 
required for analysis in other domains. Consequently, we 
have developed the CRData toolset to complement the 
functionality of executing R scripts in Galaxy for the 
CardioVascular Research Grid (CVRG), which aims to 
create an infrastructure for sharing cardiovascular data and 
data analysis tools [22]. 

The CRData toolset consists of 35 tools with various 
functions. For example, the “heatmap_plot_demo.R” tool 
performs hierarchical clustering by genes or samples, and 
then plots a heatmap. The 
“sequenceDifferentialExperssion.R” tool (see Figure 5) 
performs a two-sample test for RNA-sequence differential 
expression. The “affyClassify.R” tool conducts statistical 
classification of affymetrix CEL Files into groups. And the 
“sequenceCountsPerTranscript.R” tool summarizes the 
number of reads (presented in one or more BAM files) 
aligning to different genomic features retrieved from the 
UCSC genome browser (http://genome.ucsc.edu/). 

 

Figure 5.  CRData tools in Galaxy (CRData includes 35 tools, this figure 

shows “sequenceDifferentialExperssion.R” tool). 

Each CRData tool corresponds to an R script from 
CRData.org. The execution of a CRData tool invokes the 
corresponding R script, transfers input parameters and files 
to the script, and returns output files and figures after 
running R. The output is also shown in Galaxy’s history 
panel for subsequent analysis or download.  

Typically the process of adding new tools to a Galaxy 
instance is difficult as users must install all required software 
on the cluster and add tool definitions to Galaxy. However 
using our GP-based framework we can quickly and easily 
add the CRData toolset to the running instance. To 
demonstrate this flexibility we have created a new GP recipe, 

called “galaxy-globus-crdata.rb”, which deploys and 
configures the CRData toolset on the cluster and adds the 
tool definitions to Galaxy. This recipe downloads and installs 
the necessary software (R, LibSBML, LibXML, GraphViz, 
cURL, etc.) and R packages on the “simple-galaxy-condor” 
host. The recipe is then transferred to the Globus Provision 
AMI when starting or updating a GP instance, and finally the 
generated Galaxy instance includes the CRData toolset. 

The Globus Transfer tools and CRData tools can be 
accessed from the CVRG Galaxy portal [23]. 

V. EVALUATION 

We now describe a real-world use case and the results of 
a performance evaluation of our extensions. 

A. Use Case 

After creating an AWS account and Globus Online 
account, a Galaxy instance is created on EC2 based on the 
properties specified in the topology file (galaxy.conf) 
described in Figure 3. The following commands are used to 
create and start a Galaxy instance with Globus Transfer and 
CRData tools. 

 
$ gp-instance-create   -c   galaxy.conf 
Created new instance: gpi-02156188 
 
$ gp-instance-start   gpi-02156188 
Starting instance gpi-02156188... done! 
 
The output indicates the GP instance id (“gpi-02156188”) 

which allows monitoring of the status and URL of each host 
through the GP command “gp-instance-describe”. When the 
GP instance is running, users (defined in the topology file) 
can connect to any of its constituent hosts.  

In order to use Globus Transfer in Galaxy, the user must 
create an account in Globus Online and add an X.509 
certificate to their profile in order to let Galaxy perform 
Globus Transfer jobs on their behalf. GP provisions the EC2 
cluster with each user’s Globus Online credentials so that 
each user can transfer data between Galaxy and any Globus-
enabled endpoint. Each user in the cluster is given a user 
certificate signed by GP. The X.509 and GP certificates 
guarantee the security of data transfer when using Globus 
Transfer . 

We consider a bioinformatics workflow as an example of 
using the elastic Galaxy environment. A summary of the 
example workflow is shown in Figure 6. In this example we 
configure the GP instance to run a CRData tool on a small 
cluster and then expand the cluster dynamically to run the 
same workflow on a larger dataset.  

1. Transfer dataSet 

fourCelFileSamples.zip 

from go#ep1 to Galaxy

2. Run 

affyDifferentialExpression.R

3. Transfer dataSet 

affyCelFileSamples.zip 

from go#ep1 to Galaxy

4. Run 

affyDifferentialExpression.R

Use GP to deploy 

a Galaxy instance 

Update GP Instance 

(Add new host)

Globus Online Tool

Data size: 190.3MB

CRData Tool

CRData ToolGlobus Online Tool

Data size: 10.7MB

 

Figure 6.  Bioinformatics workflow use case. 

http://genome.ucsc.edu/


First, using the 'Get Data via Globus Online' tool in 
Galaxy, the dataset fourCelFileSamples.zip (10.7MB) is 
transferred from a Globus endpoint to the Galaxy server. The 
parameters “Endpoint” and “Path” are set as follows: 

 Endpoint:  galaxy#CVRG-Galaxy (the name of the 
remote endpoint) 

 Path: /home/boliu/fourCelFileSamples.zip (the 
location of the file at this endpoint) 

After execution, the uploaded dataset is shown in the 
History panel, it can also be downloaded by clicking the 
“Save” button. 

After uploading the data, the user can run the appropriate 
statistical tool by selecting the 'CRData' tool and 
'affyDifferentialExpression.R', and setting the parameters as 
shown in Figure 7. The tool runs the 
affyDifferentialExpression.R script which conducts two-
group differential expression on Affymetrix CEL files. This 
script takes the dataset “fourCelFileSamples.zip” (uploaded 
in step 1) as input, and creates a “top table” of probe sets that 
are differentially expressed between CEL files that have been 
assigned to one of two groups. 

 

Figure 7.  CRData tool “affyDifferentialExpression.R” (Step 3). 

After execution, the output results are shown in the 
History panel, including both text output (see Figure 8) and 
figure output (see Figure 9 (a)). 

 

Figure 8.  Text output of “affyDifferentialExpression.R” (Step 3). 

The input dataset used for this example is only 10.7MB, 
which can be processed easily on a small EC2 instance. In 
the second stage of the example the user would like to 
process a larger dataset “affyCelFileSamples.zip” (190.3MB). 
However, this takes considerable time to process when using 

small EC2 instances. In order to speed up the workflow, a 
user can update the GP instance by adding a new EC2 host. 
This is done by creating a new GP topology file, and 
requesting a new host with the instance type “c1.medium”. 

 
$ gp-instance-update -t newtopology.json gpi-02156188 
 
The user can then follow the same process as outlined 

above by transferring the dataset “affyCelFileSamples.zip” 
from galaxy#CVRG-Galaxy endpoint to the Galaxy server 
and then running the affyDifferentialExpression.R' tool to 
analyze the dataset “affyCelFileSamples.zip”. The output 
results are shown in the Galaxy History panel (Figure 9 (b)). 

 
(a)                                                     (b) 

Figure 9.  Figure output of “affyDifferentialExpression.R” in Step 3 (a) 

and Step 4 (b). 

While the operation of updating the GP instance is 
optional, it does however decrease the execution time of 
Steps 3 and 4 from 10.7 minutes using a small instance to 6.9 
minutes after adding a new medium instance. Presumably 
similar improvements could be obtained using larger 
instances. Moreover, the same approach can be applied for 
concurrent execution when multiple users submit tasks for 
execution at the same time.  

This use case shows the ease by which users can deploy 
and scale their workflow environment to meet the needs of 
complex analyses or large-scale datasets. The GP-based 
approach can dynamically adjust the number of nodes and 
instance types at runtime, which can increase the 
performance of scientific workflows and potentially lower 
the cost of execution. 

B. Performance evaluation 

Figure 10 compares the deployment time, execution time 
and cost of Steps 3 and 4 on different EC2 instance types. 
We see that significant performance improvements can be 
obtained when using larger instances. For example, 
execution time decreases to 5.4 minutes on a large instance 
and to 4.6 minutes on an extra-large instance. However, 
performance improvements are disproportionate with cost, 
which almost doubles for each increase in instance size. The 
cost for executing Steps 3 and 4 on small and extra-large 
instances increases from 0.007 to 0.024 dollars. This figure 
also compares the deployment time using GP to set up a 
Galaxy instance with Globus Transfer tools and a set of 
bioinformatics tools. On a small EC2 instance, GP takes 8.8 
minutes, the deployment time is reduced to 7.2 minutes on a 
medium instance and to 4.9 minutes on an extra-large 
instance. 



 

Figure 10.  Comparison of execution time, deployment time and cost. 

We compared the performance obtained using Globus 
Transfer with that achieved when using FTP and HTTP in 
Galaxy. Figure 11 shows the average transfer rate (in 
Mbits/sec) obtained when moving data from a laptop to the 
Galaxy server (running on a c1.medium instance) using 
different methods and file sizes. The transfer rate of the 
Globus Transfer method varies with file size, from 1.8 to 37 
Mbits/sec, while the transfer rate of FTP varies from 0.2 to 
5.9 Mbits/sec and HTTP is only able to achieve a transfer 
rate of less than 0.03 Mbits/sec (up to the maximum 2GB file 
size). We see that Globus Transfer outperforms FTP and 
HTTP significantly for all file sizes considered. In addition, 
Globus Transfer offers significant additional benefits in 
terms of security and reliability, which are crucial in many 
scientific domains.  

  
Figure 11.  Comparison of average transfer performance 

VI. RELATED WORK 

Many Cloud provisioning tools have been developed that 
can be used to accelerate the deployment of scientific 
workflow platforms. For example, the Chef system [17] that 
we build on in this work makes it easy to deploy servers and 
scale applications throughout the entire infrastructure; 
Puppet [24] gives system managers the operational agility 
and insight to manage dynamic infrastructure; Eucalyptus 
[25], Nimbus [26], and OpenStack [27] provide a software 
platform for the implementation of private cloud computing, 
and OpenNebula [28] offers complete management of 
virtualized data centers to enable on-premise IaaS Clouds. 
However, few researchers have used these tools to automate 
deployment and scaling of scientific workflows.  

Other researchers have investigated the use of scientific 
workflow systems in Cloud environments. Dong et al. [29] 
propose a cost-effective strategy for intermediate data 
storage in scientific cloud workflow systems. Wu et al. [30] 
present a market-oriented hierarchical scheduling strategy in 
cloud workflow systems. Simmhan et al. [5] build the 
Trident scientific workflow workbench for data management 
in the Cloud. Zhang et al. [31] propose CloudWF, a scalable 
and lightweight computational workflow system for Clouds 
on top of Hadoop.  

The most similar work to our approach is CloudMan [18], 
a cloud resource management system for individual 
researchers to compose and control an arbitrarily sized 
compute cluster on Amazon EC2. CloudMan provides a 
Web interface to automate the deployment of a Galaxy 
instance on EC2, and configure the number of nodes at run-
time. We use Globus Provision over CloudMan for the 
following reasons:  

1) Globus Provision provides more flexibility in defining 
user-specific node configuration, and adding recipes for 
installing additional software.  

2) At run-time, CloudMan can only add or reduce the 
number of nodes, whereas Globus Provision can modify the 
whole configuration including adding and removing hosts 
and users, changing instance types, etc.  

3) Globus Provision makes it convenient to extend 
Galaxy with arbitrary tools (e.g., Globus Transfer and 
CRData), which in our example satisfies the requirement for 
high performance and reliable large-scale data transfer and 
support for execution of R scripts in Galaxy. 

VII. CONCLUSIONS AND FUTURE WORK 

The emergence of professionally operated Cloud 
computing infrastructures represents a considerable 
opportunity for scientific workflows, enabling easier system 
deployment, on-demand resource allocation, and elastic 
scaling. However, considerable challenges must be 
overcome before these infrastructures can be used effectively. 
These challenges include large-scale data partitioning and 
distribution, complex task scheduling and optimization.  

In this paper, we proposed an automatic and elastic 
method for deploying a scientific workflow system, Galaxy, 
in a Cloud environment. Using Globus Provision, we 
demonstrated the configuration and deployment of Galaxy 



on Amazon EC2 with the following features: on-demand 
provisioning, “pay as you go” style resource consumption, 
user-defined recipe configuration, and automatic instance 
deployment. We also extended Galaxy by adding Globus 
Transfer support for large scale data transfer as is commonly 
required in increasingly data-intensive research domains. 
Finally, we defined a model for users to easily and quickly 
add additional domain-specific tools to create a customized 
Galaxy system and demonstrated the value of this feature by 
adding the CRData toolset for our cardiovascular research 
scenario.  

We plan to add features to our GP-based architecture, 
such as more fine-grained user-specific configuration, and to 
integrate more bioinformatics analysis tools within the 
Galaxy toolbox for gene and sequence data. 
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