
Deploying Bioinformatics Workflows on Clouds with Galaxy and Globus Provision

Bo Liu

Computation Institute, University of Chicago

Chicago, IL, USA

Argonne National Laboratory

Argonne, IL, USA

boliu@uchicago.edu

Borja Sotomayor

Department of Computer Science,

University of Chicago

Chicago, IL, USA

borja@cs.uchicago.edu

Ravi Madduri

Computation Institute, University of Chicago

Chicago, IL, USA

Argonne National Laboratory

Argonne, IL, USA

madduri@mcs.anl.gov

Kyle Chard

Computation Institute, University of Chicago

Chicago, IL, USA

Argonne National Laboratory

Argonne, IL, USA

kyle@ci.uchicago.edu

Ian Foster

Computation Institute, University of Chicago

Chicago, IL, USA

Argonne National Laboratory

Argonne, IL, USA

foster@mcs.anl.gov

Abstract—Cloud computing is attracting increasing attention

as a means of providing users with fast provisioning of

computational and storage resources, elastic scaling, and pay-

as-you-go pricing. The integration of scientific workflows and

Cloud computing has the potential to significantly improve

resource utilization, processing speed, and user experience.

This paper proposes a novel approach for deploying

bioinformatics workflows in Cloud environments using Galaxy,

a platform for scientific workflows, and Globus Provision, a

tool for deploying distributed computing clusters on Amazon

EC2. Collectively this combination of tools provides an easy to

use, high performance and scalable workflow environment that

addresses the needs of data-intensive applications through

dynamic cluster configuration, automatic user-defined node

provisioning, high speed data transfer, and automated

deployment and configuration of domain-specific software. To

demonstrate how this approach can be used in practice we

present a domain-specific workflow use case and performance

evaluation.

Keywords-Scientific workflow; Cloud computing; Galaxy;

Globus provision

I. INTRODUCTION

Scientific workflows represent an important paradigm for
facilitating computational research. In a scientific workflow,
developers create applications by composing multiple
executable tasks (isolated “units” of computation or data
manipulation) that are executed in a specified order.
Traditionally, scientific workflows are executed locally, or
on High Performance Computing (HPC) clusters, Grids [1, 2]
and service-oriented architectures [3]. However, the task of

designing, creating and deploying the underlying workflow
infrastructure to support large-scale computation is non-
trivial. Moreover, administrators face difficulties configuring
and installing tool dependencies for the given domain,
reserving appropriate resources to cater for fluctuating
resource requirements, and designing scalable solutions that
can handle the increasing size of scientific data.

Cloud computing offers many features that are attractive
to scientific workflow developers [4-7]. For example,
Infrastructure-as-a-Server (IaaS) Cloud platforms, such as
Amazon EC2 [8], can provision the necessary resources to
support a workflow system quickly (within a few minutes),
provide as much computation and storage capacity as needed
in a pay-as-you-go manner, be configured with appropriate
software and applications, and elastically scale capacity as
service demands change. However there remains a
significant usability gap between the low-level interfaces
provided by Cloud resources and the various mechanisms
required by developers and users of elastic scientific
workflows. For example, scientific workflows require the
deployment and configuration of multiple components
simultaneously (e.g., distributed file systems, virtual clusters,
and a workflow portal); workflows are typically composed
of many diverse executables, each with dependencies for
specific packages or software that can be time consuming to
install and configure; the resources used by scientific
workflows may vary during run time, thus demanding an
elastic reconfiguration method to alter computational clusters
dynamically; and data sizes in many scientific domains
require high-performance and reliable data transfer to move
data between storage repositories and processing resources.

We present here an approach to realizing a high
performance and scalable scientific workflow environment
using Cloud resources. The approach is based on Galaxy [9],
a web-based platform for scientific workflow
implementation, execution and sharing. To meet the need for
large-scale data transfer we have extended Galaxy to use
Globus Online [10] -- a high performance, secure, and
reliable data transfer service. This service addresses the
challenges in moving or synchronizing large quantities of
data across administrative domains. While Galaxy already
provides tools for uploading and downloading files, the
speed and reliability of these tools is not sufficient when
transferring large datasets, as are commonly seen in
biomedical research. As we demonstrate below, Globus tools
can achieve performance improvements up to an order of
magnitude.

Our approach builds on a tool called Globus Provision
(GP) to automatically deploy and configure user-defined
workflow environments. This technology supports
automated deployment of all prerequisite tools and software
packages required for Galaxy along with additional domain
specific tools, thereby increasing GP’s value in a high
performance or domain-specific Cloud deployment. By
exploiting the GP model, the deployed workflow
environment can be modified to respond to workload
changes by elastically adding or removing nodes from the
cluster and changing instance “sizes” to balance cost and
performance. In addition, software dependencies can be
reconfigured at run-time to rapidly add or remove software
from cluster nodes.

To demonstrate the flexibility of our approach we have
extended this framework to meet the requirements of a
specific domain, in this case cardiovascular research, by
adding a set of domain-specific R based tools [11] to the
deployment. Based on this toolset, we present a workflow
use case in cardiovascular research, and evaluate its
performance with respect to time and cost.

The remainder of this paper is structured as follows,
Section 2 briefly introduces Galaxy; Section 3 provides an
overview of our approach to deploy and configure Galaxy
instances and elastically scale resources; Section 4 presents
integration of Globus Transfer and CRData as tools in
Galaxy. Section 5 presents a bioinformatics workflow use
case and performance evaluation. Finally we review related
work and present conclusions in Sections 6 and 7.

II. GALAXY

Galaxy [9] is a scientific workflow management system
developed by Pennsylvania State University and Emory
University. Galaxy provides an open, web-based platform
that is widely used by biomedical scientists for data-intensive
computational analyses and data integration. The main
features of Galaxy are as follows.

1) Web-based platform for computational analyses
Galaxy provides a simple Web interface to a set of

biomedical tools, enabling researchers to conduct their own
custom analysis and manipulation without software
installation or programming. Users can import datasets into
their workspaces from established data warehouses and/or

upload their own datasets. Interfaces to computational tools
are automatically generated from abstract descriptions to
ensure a consistent look and feel [9]. With Galaxy’s
workflow editor, various tools can be configured and
composed to complete an analysis. Galaxy automatically
records history and provenance information for each tool
executed via a workflow.

2) Workflow publishing and data sharing
Galaxy supports reproducibility by capturing sufficient

information about every step in a computational analysis, so
that the analysis can be repeated in the future [9]. It tracks, in
particular, all input, intermediate, and final datasets, as well
as the parameters and the execution order of each step of the
analysis [12]. Galaxy’s sharing model, public repositories,
and display framework provide users with the means to share
datasets, histories, and workflows via web links, either
publicly or privately. Galaxy users can annotate a history or
workflow in the analysis workspace and then share them in a
Page conveniently. A Galaxy Page is a mix of text, graphs
and embedded Galaxy items from analyses (including
datasets, histories and workflows), that allows a reader to
easily view, reproduce, or extend the analyses [9]. Galaxy
supports the whole lifecycle of research data, from creation,
annotation, to publication and reuse.

3) Extensibility
Users can deploy their own Galaxy servers and

customize it to meet particular requirements. Galaxy’s
flexible model makes the extension and integration of tools
and data trivial. A tool can be any piece of software for
which a command line invocation can be constructed. To add
a new tool to Galaxy, a developer writes a configuration file
that describes how to run the tool, including detailed
specification of input and output parameters. This
specification allows the Galaxy framework to work with the
tool abstractly, for example, by automatically generating web
interfaces [9].

III. GLOBUS PROVISION FOR GALAXY

Setting up a production instance of Galaxy is a non-
trivial task that involves a number of manual installation and
configuration steps for both the platform and any dependent
software packages—steps that can be both error-prone and
time consuming. These steps require that end-user
researchers either become IT experts or rely upon the
potentially sparse IT resources provided by their institutions.
Either approach tends to result in sub-optimal use of
researcher time and expertise.

Moreover, resource demands frequently fluctuate
between and during execution of scientific workflows. It is
often inefficient, in terms of resource usage and cost, to pre-
provision infrastructure for peak usage and it is difficult to
elastically scale (in near real-time) to the demands of a
workflow.

To address these problems, we have designed a Globus
Provision-based approach to automate the process of
deploying and scaling Galaxy on Amazon EC2. This section
first introduces Globus Provision, and then presents the

methods by which it is used to deploy and elastically scale
Galaxy deployments on Amazon EC2.

A. Introduction of Globus Provision

Globus Provision [13] is a tool for automatically
deploying a highly configurable and scalable distributed
computing system that includes remote data access, job
submission, and security. The system can be deployed with
any subset of the tools it supports such as GridFTP [14] for
high performance transfer, MyProxy [15] for user-based
access management, and Condor [16] for job submission. As
part of this configuration, GP also generates user accounts
and certificates to support secure access, sets up a Network
File System (NFS) and Network Information System (NIS)
to provide a robust shared file system across nodes, and
dynamically adds and removes software, hosts and user
accounts.

Globus Provision relies on Chef [17] to configure hosts
for a given topology. The topology is the specification of
what will be deployed (e.g. a GridFTP server, a specific set
of users, and a Condor cluster.). In Chef, the actions required
to set up a specific piece of software are defined in a Ruby
script called a recipe. Similar recipes are grouped into a
cookbook which includes associated configuration templates
and default values. GP defines several Chef Cookbooks to
handle basic host setup and configuration of each node.

Figure 1 describes the main steps for using Globus
Provision.

Install Globus Provision

Create AWS account

Define a topology

(configuration file)

Create a GP

instance

SSH to hosts

 if needed

Stop the GP

instance

Modify topology

Create/Update

GP AMI

Pre-requirement

Terminate the

GP instance

Start the GP

instance

resume

Create/Modify

recipe

Figure 1. The main steps for using Globus Provision. (The blocks with

solid lines are necessary steps, while the ones with dashed lines are

optional steps (executed if needed))

1. Pre-requirement: Before starting with GP, an Amazon
AWS account is needed. More specifically, the user
should have a secret access key and SSH (Secure Shell)
keypair for his EC2 account.

2. Create/Modify recipe: Users can modify existing recipes
or add new recipes to install and configure specific
software and packages, run commands and conduct other
operations that should be performed on each host.

3. Define a topology: The topology file defines the user’s
requirements of the system. For example, whether it
should have a shared file system, what users should be
created, what software should be installed on each
machine, etc.

4. Create/Start a GP instance: Based on the topology file,
Globus Provision will create and start one or more
instances on EC2 which together we refer to as a GP
instance.

5. SSH to hosts if needed: When the GP instance is running,
users can connect to any of its hosts via SSH.

6. Stop/Terminate the GP instance: The GP instance can be
stopped while not in use (to avoid paying for idle
resources), and resumed at a later time. Terminated
instances cannot be resumed. All the hosts are shut down
and all their resources are released after termination.

7. Modify topology: Once an instance is running, it is
possible to modify its topology, e.g., by adding and
removing hosts/users/domains, and adding software
requirements to hosts. Users can edit the instance’s
topology and tell GP to modify the running instance to
match the updated topology.

8. Create/Update GP AMI: Although GP already provides a
public Amazon Machine Image (AMI), users can also
create their own AMI (e.g., to use an AMI that is
preloaded with required software packages such as
specific bioinformatics tools) to speed up deployment.

B. Globus Provision for Galaxy

Globus Provision provides a generic architecture for
automatically configuring distributed Cloud-based
infrastructure and includes many valuable features for a
Galaxy deployment (e.g., Condor clusters for distributed
execution). For this reason we have chosen to extend GP to
support configuration and deployment of a Galaxy instance
with integrated Globus Transfer capabilities and user-defined
domain-specific tools. In doing so, we have created an
extensible framework that supports the deployment of
custom Galaxy tools such as the CRData tools which are
commonly used in cardiovascular research (Section 4.2). The
combination of default tools and Globus Transfer tools
included in the default Galaxy package simplifies the ability
for users in different domains to create a user-specific
Galaxy instance suitable for supporting data-intensive
applications.

Figure 2 shows the architecture of our deployed system.
There are three important nodes: 1) The Galaxy node
provides Galaxy applications and user interface; 2) the
GridFTP node operates as a Globus endpoint and allows
Globus Transfer between the Galaxy system and other
Globus endpoints; 3) the NFS node supplies a shared file
system for all the other nodes in the system. In addition,
when a Condor scheduler is configured, the Galaxy node
also operates as a Condor head node that manages a set of
Condor worker nodes in a dynamic Condor pool. In this
model Galaxy jobs are transparently assigned to Condor
worker nodes for parallel execution.

Galaxy node

(Condor head node)

Condor node 1 Condor node 2 Condor node n

Dynamic Condor Pool

……

Galaxy

Application

GridFTP node NFS node

Globus Online

Service

Data

transfer

with other

endpoints

Shared

File System

Figure 2. System architecture

The basis of the Galaxy GP model is a collection of new
recipes for deploying Galaxy, its components, and the
Globus Transfer additions.

One recipe (“galaxy-globus-common.rb”) is responsible
for installing the common requirements for Galaxy. (More
specifically, for a forked version of Galaxy that includes the
integrated Globus Transfer capabilities.) The recipe creates a
galaxy user, downloads Globus Transfer tools as well as
Galaxy from bitbucket.org, and copies default configuration
files and set-up scripts for Galaxy. If Galaxy is installed on a
domain with NFS/NIS, this recipe is run on the NFS/NIS
server (“simple-server”), if not it is also run on the Galaxy
server. The other core recipe (“galaxy-globus.rb”), which is
run on the Galaxy server (“simple-galaxy-condor”), installs
the Globus fork of Galaxy and Globus Transfer API, sets up
the Galaxy database, executes set-up scripts and restarts
Galaxy. Both of these recipes have been added to the
“run_list” of the appropriate hosts when deploying Galaxy
using GP.

The recipes created are open source and users can modify
and create their own recipes that will deploy customized
Galaxy instances.

C. Dynamic Topology Reconfiguration

One unique aspect of Globus Provision is its ability to
dynamically alter, during runtime, the Cloud infrastructure.
The Globus Provision Galaxy extensions take advantage of
this functionality to balance performance and cost such that
users pay only for the resources they use, while also being
able to scale up to meet resource requirements. By altering
the topology file and re-executing GP, users are able to add
and remove instances from the Galaxy Condor pool within
minutes. Unlike similar tools (e.g., CloudMan [18]), GP also
supports the ability to change the Amazon EC2 instance type
used in the deployment; thus, the user can easily customize a
deployment to meet real-time requirements. For example, if
workflow usage is low, micro or small instances can be used,
while if memory requirements of a workflow increase, the
running instances can be upgraded to large or extra-large

instances. In addition, when the workflow platform is not
being used, it can be suspended and restarted when required,
thereby reducing the overhead of running an unused or
sparsely used platform.

D. Using Globus Provision to deploy Galaxy

In order to deploy a Galaxy instance with Globus
Transfer tools using GP, the user must create a topology file
(galaxy.conf) describing the configuration (see Figure 3).
The topology file defines the user’s requirements with
respect to four aspects: general, domain-simple, ec2, and
globusonline. Briefly the options shown in Figure 3 are:

.

Figure 3. The Globus Provision topology file “galaxy.conf”.

 “domain” specifies a single domain called simple. A
topology can be divided into multiple domains, each with
its own set of users, Globus services, etc.

 “users” defines the list of user names that will be added
to the list of users on the Galaxy cluster.

 “cluster-nodes” specifies the initial number of worker
nodes to be deployed.

 “go-endpoint” defines the name of the endpoint that will
be created for this cluster. The created endpoint will be
shown in the Globus Online Transfer interface for data
transfer to and from the Galaxy instance.

 “keypair” and “keyfile” are the user’s EC2 SSH keypair.

 “ami” is the base Amazon AMI that GP will use to create
each host in the domain. Although any recent or custom
AMI can be used, GP provides an AMI that has most of
the necessary software pre-installed in it which
considerably decreases the time taken to deploy an
instance.

 “instance-type” specifies the EC2 instance types used.
We have found that t1.micro is suitable for testing,
c1.medium is good for demos, m1.large is used for high
performance instances.

 “ssh-key” is the user’s key which can be used to access
Globus Transfer for high performance file transfer.
The parameters “gridftp”, “condor” and “galaxy” define

the required standard GP packages that will be set up in the
instance. Through the topology file, the user’s requirements

[general]
domains: simple

[domain-simple]
users: user1 user2
gridftp: yes
condor: yes
cluster-nodes: 2
galaxy: yes
go-endpoint: cvrg#galaxy

[ec2]
keypair: gp-key
keyfile: ~/.ec2/gp-key.pem
ami: ami-b12ee0d8
instance-type: t1.micro

[globusonline]
 ssh-key: ~/.ssh/id_rsa

are translated to GP, including which servers need to be
deployed, how many cluster nodes will be created, etc. When
the GP instance is started, Galaxy with Globus Transfer can
be accessed via the URL of the “simple-galaxy-condor” host.
A Globus endpoint, with the name specified in the topology
file, is also created and is accessible through either Galaxy or
Globus Online.

IV. GALAXY TOOL INTEGRATION

In this section we present the development and
integration of two different tools, Globus Transfer and
CRData, into the Galaxy framework. The Globus Transfer
tools are designed to optimize data transfer in Galaxy, while
the CRData tools represent a custom tool deployment that
provides a set of statistical tools for use by biomedical
researchers. These two toolsets highlight the flexibility of the
GP-based approach for deploying customized Galaxy
environments.

A. Globus Transfer tools

Although Galaxy provides tools for uploading files via
FTP and HTTP, the tools are often unreliable and inefficient
when transferring large amounts of data, as is often the case
in next generation sequencing. Moreover, files larger than
2GB cannot be uploaded to Galaxy directly from a user’s
computer. Consequently, we have extended Galaxy by
adding Globus Transfer tools to provide a high performance,
secure and reliable way of transferring large quantities of
data in and out of Galaxy. The Globus Transfer integration in
Galaxy is shown in Figure 4.

Figure 4. Globus Transfer toolset in Galaxy (this figure shows “GO

Transfer” tool).

Globus Online Transfer (Globus Transfer) [19] is a
hosted service that provides powerful Grid transfer
capabilities to automate the task of moving files between
sites, or “endpoints”. Globus Transfer addresses the
challenges in moving or synchronizing large quantities of
data from different administrative domains in a secure,
reliable, efficient and high performance way, without
installing any software [10, 20]. Globus Transfer is
responsible for transferring files, monitoring the transfer,
retrying failures, auto-tuning performance and recovering
from faults automatically, reporting status, and notifying
users the completion of jobs via Email [19].

Globus Transfer moves files between Globus Endpoints
(GridFTP [14] servers) using the GridFTP protocol. It also
supports third party transfers, in which the selected endpoints
are not collocated with the requesting user. Many resource
providers include pre-configured Globus Endpoints for their
user communities, while other data providers expose public
Globus Endpoints as a way of easily sharing data with users.
Users can also configure their own endpoints by installing
Globus Connect [21] on their resources (such as a campus
server, desktop computer or laptop). This allows users to
access the machine as a Globus Endpoint, and transfer data
to other endpoints.

By developing Globus Transfer tools for Galaxy we have
incorporated the main benefits of Globus Online in Galaxy
as well as providing access to the large network of existing
Globus-enabled data sources. Through this integration
Galaxy users are able to transfer files between existing data
sources, their own resources and the Galaxy server securely,
efficiently and quickly.

The Globus Transfer toolset includes three tools: 1) third
party transfers between any Globus endpoints (“GO
Transfer”), 2) upload to Galaxy from any Globus endpoint
(“Get Data via Globus Online”) and 3) download from
Galaxy to any Globus endpoint (“Send Data via Globus
Online”). Each of these tools has been added as a native
Galaxy tool with an associated user interface to specify
properties of the transfer.

For example, using the “GO Transfer” tool (see Figure 4),
a file stored at a “Source endpoint” can be transferred to a
“Destination endpoint” and the file is manifested as a Galaxy
dataset in the history panel available for further analysis. If a
“Deadline” for transfer completion is specified, the job will
be terminated if it is not completed within the specified time
period and Galaxy will indicate an error in its history panel.
During execution, Galaxy invokes the Globus Transfer
REST API to create and monitor the transfer, this
information is used to update the status of the job in the
Galaxy history panel. The user also receives a notification
via Email when the transfer job is finished. Similarly, using
the “Get data via Globus Online” tool, the “Destination
endpoint” is the Galaxy server itself, and using the “Send
data via Globus Online” tool, the “Source endpoint” is the
Galaxy server.

Before using the Globus Transfer Galaxy tools, users
need to create a Globus Online account
(https://www.globusonline.org) and register an account in
Galaxy with the same username. The user must also
configure an X.509 certificate on the Galaxy server and in
Globus Online that allows the Galaxy server to submit
transfer requests on behalf of the user while guaranteeing
security of the transfer. This is done by copying the
generated X.509 certificate from the Galaxy Server and
adding it to the user’s profile through the Globus Online web
site. Globus Online manages, on behalf of users, the security
credentials required to authenticate against different
endpoints, when submitting a transfer Globus Transfer will
utilize the appropriate credential to “activate” the selected
endpoint. Finally the Galaxy server must also include a
registered Globus Endpoint, this is configured in the Globus

https://www.globusonline.org/

Provision for Galaxy recipes as described in the previous
section.

B. CRData tools

CRData.org is a web-based computational tool designed
to execute BioConductor scripts, written in R, on cloud
resources. The platform gives users an intuitive interface for
running R and Bioconductor, and is commonly used in many
research domains. Although Galaxy offers many analysis
tools for Next Generation Sequencing, it lacks many tools
required for analysis in other domains. Consequently, we
have developed the CRData toolset to complement the
functionality of executing R scripts in Galaxy for the
CardioVascular Research Grid (CVRG), which aims to
create an infrastructure for sharing cardiovascular data and
data analysis tools [22].

The CRData toolset consists of 35 tools with various
functions. For example, the “heatmap_plot_demo.R” tool
performs hierarchical clustering by genes or samples, and
then plots a heatmap. The
“sequenceDifferentialExperssion.R” tool (see Figure 5)
performs a two-sample test for RNA-sequence differential
expression. The “affyClassify.R” tool conducts statistical
classification of affymetrix CEL Files into groups. And the
“sequenceCountsPerTranscript.R” tool summarizes the
number of reads (presented in one or more BAM files)
aligning to different genomic features retrieved from the
UCSC genome browser (http://genome.ucsc.edu/).

Figure 5. CRData tools in Galaxy (CRData includes 35 tools, this figure

shows “sequenceDifferentialExperssion.R” tool).

Each CRData tool corresponds to an R script from
CRData.org. The execution of a CRData tool invokes the
corresponding R script, transfers input parameters and files
to the script, and returns output files and figures after
running R. The output is also shown in Galaxy’s history
panel for subsequent analysis or download.

Typically the process of adding new tools to a Galaxy
instance is difficult as users must install all required software
on the cluster and add tool definitions to Galaxy. However
using our GP-based framework we can quickly and easily
add the CRData toolset to the running instance. To
demonstrate this flexibility we have created a new GP recipe,

called “galaxy-globus-crdata.rb”, which deploys and
configures the CRData toolset on the cluster and adds the
tool definitions to Galaxy. This recipe downloads and installs
the necessary software (R, LibSBML, LibXML, GraphViz,
cURL, etc.) and R packages on the “simple-galaxy-condor”
host. The recipe is then transferred to the Globus Provision
AMI when starting or updating a GP instance, and finally the
generated Galaxy instance includes the CRData toolset.

The Globus Transfer tools and CRData tools can be
accessed from the CVRG Galaxy portal [23].

V. EVALUATION

We now describe a real-world use case and the results of
a performance evaluation of our extensions.

A. Use Case

After creating an AWS account and Globus Online
account, a Galaxy instance is created on EC2 based on the
properties specified in the topology file (galaxy.conf)
described in Figure 3. The following commands are used to
create and start a Galaxy instance with Globus Transfer and
CRData tools.

$ gp-instance-create -c galaxy.conf
Created new instance: gpi-02156188

$ gp-instance-start gpi-02156188
Starting instance gpi-02156188... done!

The output indicates the GP instance id (“gpi-02156188”)

which allows monitoring of the status and URL of each host
through the GP command “gp-instance-describe”. When the
GP instance is running, users (defined in the topology file)
can connect to any of its constituent hosts.

In order to use Globus Transfer in Galaxy, the user must
create an account in Globus Online and add an X.509
certificate to their profile in order to let Galaxy perform
Globus Transfer jobs on their behalf. GP provisions the EC2
cluster with each user’s Globus Online credentials so that
each user can transfer data between Galaxy and any Globus-
enabled endpoint. Each user in the cluster is given a user
certificate signed by GP. The X.509 and GP certificates
guarantee the security of data transfer when using Globus
Transfer .

We consider a bioinformatics workflow as an example of
using the elastic Galaxy environment. A summary of the
example workflow is shown in Figure 6. In this example we
configure the GP instance to run a CRData tool on a small
cluster and then expand the cluster dynamically to run the
same workflow on a larger dataset.

1. Transfer dataSet

fourCelFileSamples.zip

from go#ep1 to Galaxy

2. Run

affyDifferentialExpression.R

3. Transfer dataSet

affyCelFileSamples.zip

from go#ep1 to Galaxy

4. Run

affyDifferentialExpression.R

Use GP to deploy

a Galaxy instance

Update GP Instance

(Add new host)

Globus Online Tool

Data size: 190.3MB

CRData Tool

CRData ToolGlobus Online Tool

Data size: 10.7MB

Figure 6. Bioinformatics workflow use case.

http://genome.ucsc.edu/

First, using the 'Get Data via Globus Online' tool in
Galaxy, the dataset fourCelFileSamples.zip (10.7MB) is
transferred from a Globus endpoint to the Galaxy server. The
parameters “Endpoint” and “Path” are set as follows:

 Endpoint: galaxy#CVRG-Galaxy (the name of the
remote endpoint)

 Path: /home/boliu/fourCelFileSamples.zip (the
location of the file at this endpoint)

After execution, the uploaded dataset is shown in the
History panel, it can also be downloaded by clicking the
“Save” button.

After uploading the data, the user can run the appropriate
statistical tool by selecting the 'CRData' tool and
'affyDifferentialExpression.R', and setting the parameters as
shown in Figure 7. The tool runs the
affyDifferentialExpression.R script which conducts two-
group differential expression on Affymetrix CEL files. This
script takes the dataset “fourCelFileSamples.zip” (uploaded
in step 1) as input, and creates a “top table” of probe sets that
are differentially expressed between CEL files that have been
assigned to one of two groups.

Figure 7. CRData tool “affyDifferentialExpression.R” (Step 3).

After execution, the output results are shown in the
History panel, including both text output (see Figure 8) and
figure output (see Figure 9 (a)).

Figure 8. Text output of “affyDifferentialExpression.R” (Step 3).

The input dataset used for this example is only 10.7MB,
which can be processed easily on a small EC2 instance. In
the second stage of the example the user would like to
process a larger dataset “affyCelFileSamples.zip” (190.3MB).
However, this takes considerable time to process when using

small EC2 instances. In order to speed up the workflow, a
user can update the GP instance by adding a new EC2 host.
This is done by creating a new GP topology file, and
requesting a new host with the instance type “c1.medium”.

$ gp-instance-update -t newtopology.json gpi-02156188

The user can then follow the same process as outlined

above by transferring the dataset “affyCelFileSamples.zip”
from galaxy#CVRG-Galaxy endpoint to the Galaxy server
and then running the affyDifferentialExpression.R' tool to
analyze the dataset “affyCelFileSamples.zip”. The output
results are shown in the Galaxy History panel (Figure 9 (b)).

(a) (b)

Figure 9. Figure output of “affyDifferentialExpression.R” in Step 3 (a)

and Step 4 (b).

While the operation of updating the GP instance is
optional, it does however decrease the execution time of
Steps 3 and 4 from 10.7 minutes using a small instance to 6.9
minutes after adding a new medium instance. Presumably
similar improvements could be obtained using larger
instances. Moreover, the same approach can be applied for
concurrent execution when multiple users submit tasks for
execution at the same time.

This use case shows the ease by which users can deploy
and scale their workflow environment to meet the needs of
complex analyses or large-scale datasets. The GP-based
approach can dynamically adjust the number of nodes and
instance types at runtime, which can increase the
performance of scientific workflows and potentially lower
the cost of execution.

B. Performance evaluation

Figure 10 compares the deployment time, execution time
and cost of Steps 3 and 4 on different EC2 instance types.
We see that significant performance improvements can be
obtained when using larger instances. For example,
execution time decreases to 5.4 minutes on a large instance
and to 4.6 minutes on an extra-large instance. However,
performance improvements are disproportionate with cost,
which almost doubles for each increase in instance size. The
cost for executing Steps 3 and 4 on small and extra-large
instances increases from 0.007 to 0.024 dollars. This figure
also compares the deployment time using GP to set up a
Galaxy instance with Globus Transfer tools and a set of
bioinformatics tools. On a small EC2 instance, GP takes 8.8
minutes, the deployment time is reduced to 7.2 minutes on a
medium instance and to 4.9 minutes on an extra-large
instance.

Figure 10. Comparison of execution time, deployment time and cost.

We compared the performance obtained using Globus
Transfer with that achieved when using FTP and HTTP in
Galaxy. Figure 11 shows the average transfer rate (in
Mbits/sec) obtained when moving data from a laptop to the
Galaxy server (running on a c1.medium instance) using
different methods and file sizes. The transfer rate of the
Globus Transfer method varies with file size, from 1.8 to 37
Mbits/sec, while the transfer rate of FTP varies from 0.2 to
5.9 Mbits/sec and HTTP is only able to achieve a transfer
rate of less than 0.03 Mbits/sec (up to the maximum 2GB file
size). We see that Globus Transfer outperforms FTP and
HTTP significantly for all file sizes considered. In addition,
Globus Transfer offers significant additional benefits in
terms of security and reliability, which are crucial in many
scientific domains.

Figure 11. Comparison of average transfer performance

VI. RELATED WORK

Many Cloud provisioning tools have been developed that
can be used to accelerate the deployment of scientific
workflow platforms. For example, the Chef system [17] that
we build on in this work makes it easy to deploy servers and
scale applications throughout the entire infrastructure;
Puppet [24] gives system managers the operational agility
and insight to manage dynamic infrastructure; Eucalyptus
[25], Nimbus [26], and OpenStack [27] provide a software
platform for the implementation of private cloud computing,
and OpenNebula [28] offers complete management of
virtualized data centers to enable on-premise IaaS Clouds.
However, few researchers have used these tools to automate
deployment and scaling of scientific workflows.

Other researchers have investigated the use of scientific
workflow systems in Cloud environments. Dong et al. [29]
propose a cost-effective strategy for intermediate data
storage in scientific cloud workflow systems. Wu et al. [30]
present a market-oriented hierarchical scheduling strategy in
cloud workflow systems. Simmhan et al. [5] build the
Trident scientific workflow workbench for data management
in the Cloud. Zhang et al. [31] propose CloudWF, a scalable
and lightweight computational workflow system for Clouds
on top of Hadoop.

The most similar work to our approach is CloudMan [18],
a cloud resource management system for individual
researchers to compose and control an arbitrarily sized
compute cluster on Amazon EC2. CloudMan provides a
Web interface to automate the deployment of a Galaxy
instance on EC2, and configure the number of nodes at run-
time. We use Globus Provision over CloudMan for the
following reasons:

1) Globus Provision provides more flexibility in defining
user-specific node configuration, and adding recipes for
installing additional software.

2) At run-time, CloudMan can only add or reduce the
number of nodes, whereas Globus Provision can modify the
whole configuration including adding and removing hosts
and users, changing instance types, etc.

3) Globus Provision makes it convenient to extend
Galaxy with arbitrary tools (e.g., Globus Transfer and
CRData), which in our example satisfies the requirement for
high performance and reliable large-scale data transfer and
support for execution of R scripts in Galaxy.

VII. CONCLUSIONS AND FUTURE WORK

The emergence of professionally operated Cloud
computing infrastructures represents a considerable
opportunity for scientific workflows, enabling easier system
deployment, on-demand resource allocation, and elastic
scaling. However, considerable challenges must be
overcome before these infrastructures can be used effectively.
These challenges include large-scale data partitioning and
distribution, complex task scheduling and optimization.

In this paper, we proposed an automatic and elastic
method for deploying a scientific workflow system, Galaxy,
in a Cloud environment. Using Globus Provision, we
demonstrated the configuration and deployment of Galaxy

on Amazon EC2 with the following features: on-demand
provisioning, “pay as you go” style resource consumption,
user-defined recipe configuration, and automatic instance
deployment. We also extended Galaxy by adding Globus
Transfer support for large scale data transfer as is commonly
required in increasingly data-intensive research domains.
Finally, we defined a model for users to easily and quickly
add additional domain-specific tools to create a customized
Galaxy system and demonstrated the value of this feature by
adding the CRData toolset for our cardiovascular research
scenario.

We plan to add features to our GP-based architecture,
such as more fine-grained user-specific configuration, and to
integrate more bioinformatics analysis tools within the
Galaxy toolbox for gene and sequence data.

ACKNOWLEDGMENT

We appreciate the help of CVRG community and Globus
Online team. We also appreciate the Galaxy Team for their
support and maintenance of Galaxy. This work is supported
by the NIH through the NHLBI grant, The Cardiovascular
Research Grid, under contract number R24HL085343; US
Department of Energy, under contract number DE-AC02-
06CH11357; and US National Science Foundation, under
contract OCI-534113.

REFERENCES

[1] Y. Zhao, I. Raicu, and I. T. Foster:, "Scientific workflow systems for
21st century, new bottle or new wine?," in 2008 IEEE Congress on
Services, Honolulu, Hawaii, USA, 2008, pp. 467-471.

[2] I. J. Taylor, E. Deelman, D. B. Gannon, and M. Shields, Eds.,
Workflows for e-Science: Scientific Workflows for Grids. Springer, New
York, Secaucus, NJ, USA., 2007.

[3] W. Tan, R. Madduri, A. Nenadic, S. Soiland-Reyes, D. Sulakhe, I.
Foster, and C. A. Goble, "CaGrid Workflow Toolkit: a Taverna based
workflow tool for cancer grid," BMC Bioinformatics, vol. 11, p. 542, 2010.

[4] G. Juve, E. Deelman, K. Vahi, G. Mehta, B. Berriman, B. P. Berman,
and P. Maechling, "Scientific workflow applications on Amazon EC2," in
Workshop on Cloud-based Services and Applications in conjunction with
5th IEEE International Conference on e-Science (e-Science 2009), Oxford
UK, 2009, pp. 59-66.

[5] Y. Simmhan, R. Barga, C. van Ingen, E. Lazowska, and A. Szalay,
"Building the trident scientific workflow workbench for data management
in the cloud," in Third International Conference on Advanced Engineering
Computing and Applications in Sciences, 2009, pp. 41-50.

[6] C. Hoffa, G. Mehta, T. Freeman, E. Deelman, K. Keahey, B. Berriman,
and J. Good, "On the use of cloud computing for scientific workflows," in
IEEE International Conference on eScience, 2008, pp. 640-645.

[7] T. Dornemann, E. Juhnke, and B. Freisleben, "On-demand resource
provisioning for BPEL workflows using Amazon's elastic compute cloud,"
in IEEE/ACM International Symposium on Cluster Computing and the
Grid, 2009, pp. 140-147.

[8] Amazon EC2. Available: http://aws.amazon.com/ec2/

[9] J. Goecks, A. Nekrutenko, and J. Taylor, "Galaxy: a comprehensive
approach for supporting accessible, reproducible, and transparent
computational research in the life sciences," Genome Biol, vol. 11, p. R86,
2010.

[10] B. Allen, J. Bresnahan, L. Childers, I. Foster, G. Kandaswamy, R.
Kettimuthu, J. Kordas, M. Link, S. Martin, K. Pickett, and S. Tuecke,
"Software as a service for data scientists," Commun. ACM, vol. 55, pp. 81-
88, 2012.

[11] R project. Available: http://www.r-project.org/

[12] Galaxy. Available:
http://en.wikipedia.org/wiki/Galaxy_(computational_biology)

[13] Globus Provision. Available: http://globus.org/provision/

[14] J. Bresnahan, M. Link, G. Khanna, Z. Imani, R. Kettimuthu, and I.
Foster, "Globus GridFTP: what's new in 2007," presented at the
Proceedings of the first international conference on Networks for grid
applications, Lyon, France, 2007.

[15] J. Basney, M. Humphrey, and V. Welch, "The MyProxy online
credential repository," Software: Practice and Experience, vol. 35, pp. 801-
816, 2005.

[16] D. Thain, T. Tannenbaum, and M. Livny, "Distributed computing in
practice: the Condor experience: Research Articles," Concurr. Comput. :
Pract. Exper., vol. 17, pp. 323-356, 2005.

[17] Chef. Available: http://www.opscode.com/chef/

[18] E. Afgan, D. Baker, N. Coraor, B. Chapman, A. Nekrutenko, and J.
Taylor, "Galaxy CloudMan: delivering cloud compute clusters," BMC
Bioinformatics, vol. 11 Suppl 12, p. S4, 2010.

[19] Globus Online. Available: https://www.globusonline.org

[20] I. Foster, "Globus Online: Accelerating and Democratizing Science
through Cloud-Based Services," Internet Computing, IEEE, vol. 15, pp. 70-
73, 2011.

[21] Globus Connect. Available:
https://www.globusonline.org/globus_connect/

[22] R. L. Winslow, J. Saltz, and I. Foster, "The CardioVascular Research
Grid (CVRG) Project," AMIA Summit on Translational Bioinformatics:
San Francisco, CA, 2011.

[23] CVRG Galaxy portal. Available: https://portal.cvrgrid.org/

[24] Puppet. Available: http://puppetlabs.com/

[25] D. Nurmi, R. Wolski, C. Grzegorczyk, G. Obertelli, S. Soman, L.
Youseff, and D. Zagorodnov, "The Eucalyptus Open-Source Cloud-
Computing System," in Cluster Computing and the Grid, 2009. CCGRID
'09. 9th IEEE/ACM International Symposium on, 2009, pp. 124-131.

[26] P. Marshall, H. M. Tufo, K. Keahey, D. L. Bissoniere, and M.
Woitaszek, "Architecting a Large-scale Elastic Environment -
Recontextualization and Adaptive Cloud Services for Scientific
Computing," in ICSOFT, 2012, pp. 409-418.

[27] OpenStack: The open source, open standards cloud. Available:
http://openstack.org/

[28] P. Mvelase, N. Dlodlo, I. Makitla, G. Sibiya, and M. Adigun, "An
Architecture Based on SOA and Virtual Enterprise Principles: OpenNebula
for Cloud Deployment," Proceedings of the International Conference on
Information Management & Evaluation, pp. 214-222, 2012.

[29] Y. Dong, Y. Yun, L. Xiao, and C. Jinjun, "A cost-effective strategy for
intermediate data storage in scientific cloud workflow systems," in Parallel
& Distributed Processing (IPDPS), 2010 IEEE International Symposium on,
2010, pp. 1-12.

[30] Z. Wu, X. Liu, Z. Ni, D. Yuan, and Y. Yang. (2011, 1.10.2012). A
Market-Oriented Hierarchical Scheduling Strategy in Cloud Workflow
Systems. Available:
http://www.springerlink.com/content/t7t8823l8g88l827/fulltext.pdf

[31] C. Zhang and H. De Sterck, "CloudWF: A Computational Workflow
System for Clouds Based on Hadoop." vol. 5931, M. Jaatun, et al., Eds., ed:
Springer Berlin / Heidelberg, 2009, pp. 393-404.

http://aws.amazon.com/ec2/
http://www.r-project.org/
http://en.wikipedia.org/wiki/Galaxy_(computational_biology
http://globus.org/provision/
http://www.opscode.com/chef/
http://www.globusonline.org/
http://www.globusonline.org/globus_connect/
http://puppetlabs.com/
http://openstack.org/
http://www.springerlink.com/content/t7t8823l8g88l827/fulltext.pdf

